• 제목/요약/키워드: Torsional Torque Vibration

검색결과 93건 처리시간 0.021초

토크 측정을 이용한 차량 변속기용 비틀림 진동 절연 댐퍼 평가 (Evaluation of Torsional Vibration Isolation Damper in Automotive Transmissions Based on In-situ Torque Measurement)

  • 김기우;장재덕
    • 한국소음진동공학회논문집
    • /
    • 제22권4호
    • /
    • pp.377-382
    • /
    • 2012
  • This paper presents a proof-of-concept study on the evaluation of torsional vibration isolation performance through in-situ output torque measurement by using a non-contacting magneto-elastic torque transducer installed in the vehicle driveline system. The de-trending processing is first conducted to extract the torsional vibration from the measured driveline output torque. In order to estimate the transmissibility, primary performance indicator of a vibration isolator, the magnitude of transmitted torsional vibration with different frequencies is compared. From the conservative estimation results, the torsional damper built in a lock-up clutch of a torque converter is identified to be a vibration isolator. The evaluation results show that the fluid damping by torque converter outperforms the vibration isolation function of a torsional damper, and the isolation performance needs to be enhanced.

구동 출력 토크 측정을 이용한 비틀림 진동 절연 성능 평가 (Evaluation of Torsional Vibration Isolation Performance Using In-situ Driveline Output Torque Measurement)

  • 김기우;장재덕
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.382-387
    • /
    • 2012
  • This paper presents a proof-of-concept study on the evaluation of torsional vibration isolation performance through in-situ output torque measurement by using a non-contacting magneto-elastic torque transducer installed in the vehicle driveline system. The de-trending processing is first conducted to extract the torsional vibration from the measured driveline output torque. In order to estimate the transmissibility, primary performance indicator of a vibration isolator, the magnitude of transmitted torsional vibration with different frequencies is compared. From the conservative estimation results, the torsional damper built in a lock-up clutch of a torque converter is identified to be a vibration isolator. The evaluation results show that the fluid damping by torque converter outperforms the vibration isolation function of a torsional damper, and the isolation performance needs to be enhanced.

  • PDF

공회전시 비틀림진동 저감을 위한 클러치 비틀림 특성 연구 (A Study on Clutch-disc Torsional Characteristic for aTorsional Vibration Reduction at Idling)

  • 홍동표;정태진;김상수;태신호
    • 소음진동
    • /
    • 제4권3호
    • /
    • pp.319-325
    • /
    • 1994
  • The flucturation of the engine torque appears to be the major source of the torsional vibration of the automotive driveline. The reduction of this torsional vibration has become a significant problem, due to an increase in the flucturation of the torque of recent light weighted powered engines, along with the requirements of higher performance. The torsional vibration of the automotive driveline can be reduced by soothing the fluctuation by adjusting the torsional characteristics of the clutch-disc. Computer simulation of the engine- input gear train is a useful investigative tool on studying the torsional characteristics of the clutch-disc. In this paper, a dynamic model for the automotive driveline was developed, and the engine torque and drag torque of the model were evaluated withe experimental data. By executing a simulation using the model, it has become possible to obtain the clutch-disc torsional characteristics when the engine is idling and the clucth-disc torsional characteristics for reducing the torsional vibration has been suggested.

  • PDF

주행시 비틀림진동 저감을 위한 클러치 비틀림특성 연구 (A Study on Clutch Torsional Characteristics for the Torsional Vibration Reduction at Driving)

  • 정태진;홍동표;태신호;윤영진;김상수
    • 소음진동
    • /
    • 제5권1호
    • /
    • pp.75-83
    • /
    • 1995
  • The fluctuation of the engine torque appears to be the major source of the torsional vibration of the automotive driveline. The reduction of this torsional vibration has become a significant problem, due to an increase in the fluctuation of the torque of recent light weighted and high powered engines, along with the requirements of higher performance. The torsional vibration of the automotive driveline can be reduced by smoothing the fluctuation by adjusting the torsional characteristics of the clutch-disc. This paper presents an experimental and theoretical research on the clutch-disc torsional characteristics for the reduction of the torsional vibration at driving. The effects of clutch-damper on diminishing the torsional vibration were investigated experimentally. A dynamic model for the automotive driveline was developed, and the engine torque of the model were evaluated with experimental data. By executing a simulation using the model, it has become possible to obtain the clutch-disc torsional characteristics and the clutch-disc torsional characteristics for reducing the torsional vibration has been suggested. The results are as follows: (1) By exceuting simulations using nonlinear model of four degrees of freedom, a design technique to determine the clutch-disc torsional characteristics for reducing the torsional vibration at driving was developed. (2) The influence of barious torsional characteristics of the clutch has been studied in examining design parameters, which indicates that the domain to minimize the torsional vibration at driving depends on the characteristics of the clutch-damper, i. e., spring constant and hysteresis.

  • PDF

최저속주행시 동력전달계의 비틀림진동 저감을 위한 클러치특성 연구 (A Study on Clutch-disc Characteristics for the Torsional Vibration Reduction of the Drive-Line at Creeping)

  • 정태진;홍동표;태신호;김상수
    • 한국자동차공학회논문집
    • /
    • 제3권2호
    • /
    • pp.102-111
    • /
    • 1995
  • The non-periodic fluctuation of the engine torque appears to be the major source of the torsional vibration of the automotive driveline. The reduction of this torsional vibration has become a significant problem along with the requirements of higher performance. The torsional vibration of the automotive driveline can be reduced by smoothing the fluctuation by adjusting the torsional characteristics of the clutch-disc. Computer simulation of the driveline is a useful investigative tool on studying the torsional characteristics of the clutch-disc. In this paper, a dynamic model for the automotive driveline was developed, and the engine torque of the model were evaluated with experimental data. By executing a simulation using the model, it has become possible to obtain the clutch-disc torsional characteristics for reducting the torsional vibration at creeping.

  • PDF

차동 기어의 진동 저감을 위한 동력 전달계 진동 해석 (Vibrational analysis of driveline for reducing differential gear vibration)

  • 최은호
    • 한국생산제조학회지
    • /
    • 제6권3호
    • /
    • pp.96-102
    • /
    • 1997
  • Eigenvalue analysis of vibration mode and an analysis by frequency response among the methods of predicting gear noise are related with transmitting sound of vibration. In this study we intended to reduce the vibration noise of differential gear by reducing torque fluctuation of drive pinion shaft which causes vibration noise of differential gear in rear wheel drive vehicles. For this we developed multi-degree of freedom analysis model in which mass moment of inertia and torsional spring combined and we examined the influence of torsional vibration of driveline elements by performing forced vibration analysis of engine excitation torque. We studied the methods for reducing torsional vibration of driveline according to the design factor of propeller shaft and examined the effects reducing vibration in differential gear by applying flexible coupling.

  • PDF

차량 클러치 스프링 댐퍼의 진동 전달률 해석 및 측정 (Vibration Transmissibility Analysis and Measurement of Automotive Clutch Spring Dampers)

  • 장재덕;김기우;김원진
    • 한국소음진동공학회논문집
    • /
    • 제23권10호
    • /
    • pp.902-908
    • /
    • 2013
  • The input torque ripple induced by combustion engines is a significant source of NVH(noise, vibration and harshness) problem in automotive transmissions. Because this torque fluctuation is primarily transmitted to the input shaft of automotive powertrains(e.g., automatic transmissions) when the lock-up clutches are closed, a torsional damper with helical springs is generally inserted between engine and transmissions to isolate the input vibratory energy, which is essential for the passenger comfort. The torsional vibration isolator exhibits frequency ranges in which there is low vibration transmissibility. However, the isolation performance is currently evaluated through the static torsional spring characteristics. In this study, the transmissibility of torsional spring dampers, essential dynamic performance index for vibration isolator, is first experimentally evaluated.

차량주행시 동력전달계의 강제진동 해석 (Computer Simulation of Powertrain Forced Torsional Vibration)

  • 최은오;안병민;홍동표
    • 소음진동
    • /
    • 제7권5호
    • /
    • pp.853-860
    • /
    • 1997
  • For this study, the multi-degree of freedom analysis model of torsional vibration was developed. This model is combined with mass moment of inertia and torsional spring in two wheel drive and four wheel drive vehicle. We compared and analyzed torsional vibration characteristics by natural frequencies and mode shapes which are obtained by free vibration analysis of this model. And we studied torsional vibration contribution of driveline elements by performing the forced vibration analysis of engine excitation torque. The validity of this model is demonstrated by the field test. The reduction effect of the torsional vibration along the driveline design factor is presented by the analytical results.

  • PDF

크랭크축 비틀림진동점성댐퍼의 설계와 댐퍼 성능시뮬레이션프로그램개발 (A study on the design of the torsional vibration viscous damper for the crankshaft and developing of its performance simulation computer program)

  • 이충기;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.77-96
    • /
    • 1989
  • In diesel engines, it is inevitable that the torsional vibration is produced by the fluctuation of engine torque. Therefore, if the occurence of torsional vibration is confirmed in the design stage or the torsional vibration is observed on the bed of test run, it is necessary to establish some preventive measures to avoid dangerous conditions. Major preventive measures are as follows : 1. Changing the natural frequency of shaft system. 2. Repressing the vibration amplitude by the damping energy. 3. Counterbalancing the exciting torque by the resistant torque. 4. Counterbalacing the harmonic component of exciting energy. In above methos, the damper is the last measure to be used for controlling the torsional vibration. In this thesis, the design of viscous damper that absorbs the exciting energy is investigated and a number of problems associated with the design of viscous damper are treated and a computer pregram for the process of damper design is developed. A viscous damper for a high speed diesel engine is designed and its effect is simulated by the author's computer program.

  • PDF

래틀 진동을 위한 설계 기법 연구 (A Study on the Design Technique to Reduce the Rattle Vibration)

  • 안병민;장일도;홍동표;정태진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.562-566
    • /
    • 1997
  • The main torsional vibration source of the driveline is the fluctuation of the engine torque. The gear rattle is impacts generating in the backlash of the free gear due to this torsional vibration Optimization of the clutch torsional characteristic is one of the effective methods to reduce the idle gear rattle. Many researches have been reported on this problem but only few of them give sufficient consideration to the full clutch design parameters(stiffness, hysteresis torque, preload, first stage length) and drag torque This paper pays attention to the gear impact mechanism, clutch design parameters and drag torque to reduce the idle gear rattle with computer simulation.

  • PDF