• Title/Summary/Keyword: Torsional Test

Search Result 320, Processing Time 0.027 seconds

Wind tunnel test study on verifying the characteristics of torsional fluctuating wind force of rectangular tall buildings (고층건축물의 비틀림방향 변동풍력의 특성에 관한 실험적 연구)

  • Ha, Young-Cheol;Kim, Dong-Woo;Kil, Yong-Sik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.101-104
    • /
    • 2006
  • This study aims at verifying characteristics of torsional fluctuating moment coefficient and power spectral density, which is needed to estimate torsional response of tall buildings. In order to estimate characteristics, the wind tunnel tests have been conducted on 52 types aero-elastic model of the rectangular prisms with various aspects ratios, side ratios and surface roughness in turbulent boundary layer flows. In this paper, characteristics of torsional fluctuating wind force are briefly discussed and then these results were mainly analyzed as a function of the aspects ratios and side ratios of buildings.

  • PDF

Flutter Experiment Equipment Design with Compliant Mechanism (컴플라이언트 메커니즘을 이용한 플러터 실험 장치 설계)

  • Lee, Ju-Ho;Lee, Jun-Seong;Sung, Yeol-Hun;Han, Jae-Hung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.429-434
    • /
    • 2012
  • This paper deals with a development of 2-DOF flutter experiment equipment which represents a 2-DOF typical section model. For a conventional 2-DOF flutter experiment equipment, it is hard to observe flutter boundary clearly due to the complexity of the experiment equipment. To refine our flutter experiment equipment system, a compliant mechanism based torsional spring is used. Well-designed extruded aluminum pipe works as a torsional spring. SolidWorks and ANSYS are used for modeling, analysis and design of the torsional spring. With this designed torsional spring, the 2-DOF flutter experiment equipment is developed and wind tunnel tests are performed. Clear flutter boundary which is estimated by classical flutter analysis is observed in the experiments.

  • PDF

A Performance Analysis and Experiment of Viscous Torsional Vibration Damper for High Speed Engine Shaft System (고속엔진축계용 점성 비틀림진동감쇠기의 성능해석 및 실험)

  • Yang, B.S.;Jeong, T.Y.;Kim, K.D.;Kim, D.J.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.98-105
    • /
    • 1997
  • In general, crankshafts which are used in internal combustion reciprocating engines are subjects to high torsional vibration. Therefore, a damper is often used to minimize the torsional vibration in reciprocating engines. In this paper, in order to investigate damping performance of viscous damper, the real effective viscosity and complex damping coefficient of silicone oil, and the effective inertia moment of inertia ring are calculated considering the relative motion between damper casing and inertia ring. Based on these results multi-cylinder shaft is modeled into equivalent 2-degree of freedom system and optimum condition is estimated by calculating the amplification factor of viscous damper. Also the test damper was manufactured according to the result of theoretical investigation, the performance and durability was ascertained through experimental examination.

  • PDF

Prediction of the Torsional Strength of Reinforced Concrete Beams Subjected to Pure Torsion (순수비틀림을 받는 철근콘크리트 보의 비틀림 강도 예측)

  • 이정윤;박지선
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.1010-1021
    • /
    • 2002
  • The current ACI design code does not take into account the contribution of concrete for the torsional moment of reinforced concrete(RC) beams subjected to pure torsion. This code is not capable of evaluating the inter-effects between concrete and torsional reinforcement on the torsional resistance of the RC beams. Some test results indicated that the current ACI code was not successful in predicting the observed torsional moment of the RC beams with reasonable accuracy. The research reported in this paper provides an evaluation equation to predict the torsional moment of the RC beams subjected to pure torsion. The proposed equation is derived from the equilibrium as well as compatibility equations of the truss model for the cracked RC beams. Comparisons between the observed and calculated torsional moments of the 66 tested beams, showed reasonable agreement.

A Study on the Automobile Clutch Disc Spline Hub with High Toughness by Powder Metallurgy (분말 야금에 의한 고인성 자동차 Clutch Disc Spline Hub 개발에 관한 연구)

  • 허만대;장경복;강성수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.28-34
    • /
    • 1998
  • Powder metallurgy processes are able to form Net-Shape products and have been widely used in the production of automobile parts to improve its productivity. However, because of pores in powder products, the toughness of powder products are generally poor. Therefore, forged products are used in parts which suffer severe fatigue loads. In this paper, the choice of powder materials and production processes such as mixing, compaction, sintering, heat treatment to produce automobile spline hub are studied. Three type of materials are selected and processed and its microstructure and properties are investigated by tensile test, compression ring test, and impact test. Materials and processing methods are selected from the results. Finally, experimental spline hubs are manufactured by selected processes from selected powders and proved by torsional durability test.

  • PDF

A Study on Shaft Fatigue Strength due to Torsional Vibrations in Two Stroke Low Speed Diesel Engines (저속 2행정 디젤엔진의 과도 비틀림 진동에 의한 축계 피로 강도에 관한 연구)

  • Lee, D.C.;Kim, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.786-791
    • /
    • 2006
  • Two stroke low speed diesel engines are mainly used for marine propulsion or power plant prime mover. These have many merits such as higher thermal efficiency, mobility and durability. However various annoying vibrations sometimes occur in ships or at the plant itself. Of these vibrations, torsional vibration is very important and it should be carefully investigated during the initial design stage for engine's safe operation. In this paper authors suggest a new estimation method of for shaft's can be calculated equivalently from accumulated fatigue cycles number due to torsional vibration. The 6S70MC-C($25,320ps{\times}91rpm$) engine for ship propulsion was selected as a case study, and the accumulated fatigue cycles numbers for shafting life time converted from the measured angular velocity and torsional vibration stress was calculated. This new method can be realized and confirmed in test model ship with two stroke low speed diesel engine.

  • PDF

A study on the calculation of synthesized torsional vibration for the marine diesel engine shafting by the mechanical impedance method (기계적 임피던스법에 의한 박용디젤기관 추진축계의 합성비틀림진동 계산에 관한 연구)

  • 박용남;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.146-155
    • /
    • 1986
  • Until recently, the calculation of torsional vibration for the marine diesel engine shafting has been performed only for vibratory stresses of resonant points and vibratory stresses for other engine speeds are determined by the estimation. With the advent of energy-saving engines which have a long stroke and a small number of cylinders, the first major critical torsional vibration of the propulsion shaft appears ordinarily near the MCR speed of engine and the flank of its vibratory stress exceeds now and then the limit stress defined by the rules of Classification Society. In order to know the above condition in the design stage of propulsion shafting, it is necessary to calculate the forced torsional vibration with the damping of propulsion shafting for all orders and to synthesize its calculated results according to their phase angles. In this study, the forced torsional vibrations with the damping of propulsion shafting are calculated for several orders by mechanical impedance method, and their results are synthesized. A computer program for above calculations are developed and some test-runs of the developed program are performed for propulsion shaftings of actual ships. The results of calculations are compared with measured values and also with those of the modal analysis method. They show fairly good agreements and the developed program is checked up on its reliability.

  • PDF

Effect of Prior Structure on Torsional Fatigue Strength of Induction Surface Hardened Medium Carbon Steel (고주파 표면경화된 중탄소강의 비틀림 피로강도에 미치는 초기조직의 영향)

  • Kim, Heung-Jip;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.247-257
    • /
    • 1998
  • In order to evaluate the relation between prior structure and fatigue strength on a induction surface hardened medium carbon steel(SAE1050M) for automotive drive shafts, torsional fatigue test were conducted with various cases of different hardened depths and applied loads. Prior structures of the steel such as pearlite, fine pearlite and spheroidal pearlite were prepared by conventional nomalizing, tempering after quenching and spheroidized annealing, respectively. Maximum torsional fatigue strength can be obtained when the case depth is 18~25% diameter of the bar in each prior structure. The effect of case depth on the torsional fatigue strength was different depending on applied load to specimen, but the most good fatigue life was shown in the case of pearlitic structure when the case depth was 4.0~5.5mm(18~25% of bar diameter). Among three different prior structures, energy consumption, to obtain high strength or to get the same case depth, was the most saved in the case of pearlitic structure.

  • PDF

Study on Torsional Strength of Reinforced Concrete Members (철근콘크리트 부재의 비틀림강도에 관한 연구)

  • Park, Chang-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.145-150
    • /
    • 2019
  • This paper proposes a model for the calculation of the ultimate torsional strength in normal-strength and high-strength concrete beams which include the concrete contribution strength and use a reasonable thickness of shear flow. The adequacy of the proposed model is evaluated by comparing the calculated torsional strength with the experimentally observed results from 104 test specimens reported in the literature. The results are also compared with the calculations of the KCI and the ACI building code equations, and those of other model which include the concrete contribution strength. The comparisons show that the ultimate torsional strengths calculated by the proposed equation and Rahal's equation are closer to the experimentally observed results than those calculated by the code equations.

Study on Torsion due to Automotive Body Type at Track Driving (궤적주행 시 차체 종류에 따른 비틀림에 관한 연구)

  • Choi, Youn-Jong;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.57-62
    • /
    • 2013
  • Because there is no suspension and differential devices at cart body, the deformation of the frame happened during kart driving affects the driving performance caused by the elastic deformation and the fatigue life of kart frame resulted from the permanent deformation. The dynamic behavior of kart caused by the torsional deformation during circular driving is the important factor of these two kinds of deformations. In order to analyze the dynamic behavior of kart at this curved section, GPS is used to trace the track of kart and the torsional stress at kart-frame has been measured with real time. The mechanical properties of kart-frames for leisure and racing are investigated through material property analysis and tensile test. Torsional stress concentration and frame distortion are investigated through stress analysis on frame on the basis of study result. The real karts for leisure and racing kart are also tested in each driving condition by using the driving analysis equipment. The driving behavior of kart at the curved section are investigated through this test. As the phenomenon of load movement due to centrifugal force at car is happened during circular driving, the torsional stress occurs at cart steel frame.