• Title/Summary/Keyword: Torsional Load

Search Result 333, Processing Time 0.023 seconds

Behaviors of CAD and CUS Thick-walled Composite I-Beam Under Torsional Load (비틀림 하중을 받는 두꺼운 복합재료 빔의 거동)

  • Park, Mi-Jung;Chun, Heoung-Jae;Byun, Jun-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.202-206
    • /
    • 2005
  • Most of studies on the open section composite beams are confined to the thin composite beams. There are some works focused on the thick composite beams but they are limited only to closed section beams. Therefore, it is required to develop an appropriate model to analyze the thick open section composite beams. In this study, the cantilever beams of two specific lay-up configurations are considered which are the circumferentially asymmetric stiffness (CAS) and circumferentially uniform stiffness (CUS) beams. Under the torsional loading, loading induced deformations are obtained for the thick beams using the suggested model. The model includes coupled stiffness and secondary warping effects. The results are compared with those obtained using thin beam model to observe the thickness effects. Those results are also compared with the finite element analysis results.

  • PDF

Low Cycle Fatigue Characteristics of Duplex Stainless Steel with Degradation under Pure Torsional Load (순수 비틀림 하중하에서 열화를 고려한 2상 스데인리스강의 저주기 피로특성)

  • Gwon, Jae-Do;Park, Jung-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1897-1904
    • /
    • 2002
  • Monotonic torsional and pure torsional low cycle fatigue(LCF) test with artificial degradation were performed on duplex stainless steel(CF8M). CF8M is used in pipes and valves in nuclear reactor coolant system. It was aged at 430$^{\circ}C$ for 3600hrs. Through the monotonic and LCF test, it is found that mechanical properties(i.e., yield strength, strain hardening exponent, strength coefficient etc.) increase and fatigue life(N$\sub$f/) decreases with degradation of material. The relationship between shear strain amplitude(${\gamma}$$\sub$a/)and N$\sub$f/ was proposed.

Effects of Torsional Stress on the Corrosion Characteristics in the Rotor Assembly of Marine Diesel Engine Supercharger (선박용 디젤엔진 과급기 로터 접합체의 부식특성에 미치는 비틀림응력의 영향)

  • Jo, S.K.;Kong, Y.S.;Kim, Y.D.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.50-56
    • /
    • 2005
  • The corrosion experiment was performed for 120 hours on the specimens in the natural seawater tank with four steps of the loaded torsional stress. The surface corrosion pattern of SCM440 area was showed global corrosion and narrow pitting, that was cause by galvanic corrosion between friction welded IN713LC and SCM440. But corrosion does not proceeded from IN713LC area. Initially, the average relative electrode potential and corrosion current were decreased suddenly, by and large, it was stabilized gradually tend to decreasing with the elapse of the immersion time. The corrosion rate was decreased by increasing the load stress, but 200 MPa specimen was showed most large value.

  • PDF

능동 비틀림 제어에 용이한 블레이드의 스파형상 선정

  • Bae, Jae-Seong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.184-190
    • /
    • 2015
  • On wide variety of fields, studies on active twist control are becoming more active. For effective twist control, blades have to have low torsional stresses with high torsional deformations to the same magnitude of torque acting on its cross-section. In this study, 2D sectional analysis and 3D finite element analysis were made for 5 different blades with each having different cross - sections which have different spars. The results from 2D sectional analysis, were then put into 3D blade deformation and stress calculations which lead to analysis. Outcomes from 2D and 3D analysis, showed that on the same torque and concentrated load conditions, the blade with 'C' shaped spar was the best of all the blades which were used in this study.

  • PDF

Identification of Power System Oscillation Using DFT Algorithm (DFT 알고리즘을 이용한 전력계통 동요모드 확인)

  • Kim, Dong-Joon;Moon, Young-Hwan;Kim, Yong-Hak;Yoon, Yong-Beum
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.5
    • /
    • pp.218-224
    • /
    • 2001
  • This paper describes the identification of torsional modes and power oscillation modes including the inter-area modes and local modes of KEPCO using the proposed DFT analysis algorithm which is applied to the digitally recorded RMS values of power system variables such as steady-state measured active power, load angle and so on. As a result, the inter-area mode of 0.65Hz and the local modes of the three different generators were identified. In addition the torsional modes of two steam-turbo generators were analyzed by applying the DFT algorithm. Thus, this paper clearly shows the availability of the proposed DFT algorithm that can analyze the digitally recorded effective values measured from the equipment such as PMU of DSM.

  • PDF

A study on an analysis of torsional vibration of a driveline of heavy duty truck (대형트럭 구동계의 저진동 설계 시스템의 개발연구)

  • Hwang, Won-Gul;Kim, Ki-Sei
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.132-140
    • /
    • 1996
  • This paper developes a torsional vibration model of heavy duty truck drive line for simulation of a driving rattle, which causes very annoying noise to driver at the full load driving condition. Test results show a peak in the fit plots at the frequency of the 2nd harmonics of propeller shaft revolution. A 10 d.o.f. lumped parameter nonlinear torsional vibration model is constructed and engine torque variation is calculated from P- .theta. diagram. Time responses are simulated and compared with the test results, which show fairly good agreement. The effects of paramenter change are investigated, and the optimum configuration is proposed.

  • PDF

The torsional buckling analysis for cylindrical shell with material non-homogeneity in thickness direction under impulsive loading

  • Sofiyev, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.231-236
    • /
    • 2005
  • This study considers the buckling of orthotropic cylindrical thin shells with material nonhomogeneity in the thickness direction, under torsion, which is a power function of time. The dynamic stability and compatibility equations are obtained first. Applying Galerkin's method then applying Ritz type variational method to these equations and taking the large values of loading parameters into consideration, analytic solutions are obtained for critical parameter values. Using those results, the effects of the periodic and power variations of Young's moduli and density, ratio of Young's moduli variations, loading parameters variations and the power of time in the torsional load expression variations are studied via pertinent computations. It is concluded that all these factors contribute to appreciable effects on the critical parameters of the problem in question.

A Study on Development of Vibration Analysis and CAD System for Vehicle Driveline Using Modular Approach (차랑 구동계 모듈화를 이용한 진동해석 및 설계 시스템의 개발에 관한 연구)

  • Hwang, Won-Gul;Kim, Ki-Sei
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.48-57
    • /
    • 1997
  • A computer aided analysis and design system is developed for analyzing the driveline torsional vibration of a vehicle. Torsional vibration characteristics of driveline component are investigated and 10 types of module are developed. They can be connected together to represent any driveline configuration. During assembly process simulation program is generated. It is implemented using C++language. A driveline tor- sional vibration system at full load driving condition and idle rattle system are modeled and simulated with this system. Their responses for engine torque excitation are evaluated on time and frequency domain, and the results are compared with test results favorably. This system makes it simpler and easier for design and analysis engineer to model and analyse the driveline system.

  • PDF

Behavior of Fatigue Crack Initiation and Propagation under Cyclic Tensile or Torsional Loading with Superimposed Static Biaxial Load (이축 정적 하중이 부가된 반복 인장 혹은 비틀림 하중하에서 균열 발생과 성장 거동)

  • Heo, Yong-Hak;Park, Hwi-Rip;Gwon, Il-Beom;Kim, Jin-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1446-1455
    • /
    • 2000
  • Fatigue crack initiation and propagation behavior under cyclic biaxial loading has been investigated using thin-walled tubular specimen with a hole. Two types of biaxial loading system, i.e. cyclic tensile loading with super-imposed static torsional load and cyclic torsional loading with superimposed static tensile load, with various values of the biaxial loading ratio, $\tau$ s/ $\sigma$ max (or $\tau$ max/ $\sigma$s) were employed. Fatigue tests show that fatigue crack near the hole initiates and propagates at 900 and 450 direction to the longitudinal direction of the specimen under cyclic tensile and torsion loading with static biaxial stress, respectively, and the static biaxial stress doesn't have any great influence on fatigue crack initiation and growth direction. Stress analysis near the hole of the specimen shows that the crack around the hole initiates along the plane of maximum tangential stress range. Fatigue crack growth rates were evaluated as functions of equivalent stress intensity factor range, strain energy density factor range and crack tip opening displacement vector, respectively. It is shown that the biaxial mode fatigue crack growth rates can be relatively consistently predicted with these cyclic parameters.

The effect of mass eccentricity on the torsional response of building structures

  • Georgoussis, George K.;Mamou, Anna
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.671-682
    • /
    • 2018
  • The effect of earthquake induced torsion, due to mass eccentricities, is investigated with the objective of providing practical design guidelines for minimizing the torsional response of building structures. Current code provisions recommend performing three dimensional static or dynamic analyses, which involve shifting the centers of the floor masses from their nominal positions to what is called an accidental eccentricity. This procedure however may significantly increase the design cost of multistory buildings, due to the numerous possible spatial combinations of mass eccentricities and it is doubtful whether such a cost would be justifiable. This paper addresses this issue on a theoretical basis and investigates the torsional response of asymmetric multistory buildings in relation to their behavior when all floor masses lie on the same vertical line. This approach provides an insight on the overall seismic response of buildings and reveals how the torsional response of a structure is influenced by an arbitrary spatial combination of mass eccentricities. It also provides practical guidelines of how a structural configuration may be designed to sustain minor torsion, which is the main objective of any practicing engineer. A parametric study is presented on 9-story common building types having a mixed-type lateral load resisting system (frames, walls, coupled wall bents) and representative heightwise variations of accidental eccentricities.