• Title/Summary/Keyword: Torsional Characteristics

Search Result 351, Processing Time 0.026 seconds

A Study on Clutch Torsional Characteristics for the Torsional Vibration Reduction at Driving (주행시 비틀림진동 저감을 위한 클러치 비틀림특성 연구)

  • 정태진;홍동표;태신호;윤영진;김상수
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.75-83
    • /
    • 1995
  • The fluctuation of the engine torque appears to be the major source of the torsional vibration of the automotive driveline. The reduction of this torsional vibration has become a significant problem, due to an increase in the fluctuation of the torque of recent light weighted and high powered engines, along with the requirements of higher performance. The torsional vibration of the automotive driveline can be reduced by smoothing the fluctuation by adjusting the torsional characteristics of the clutch-disc. This paper presents an experimental and theoretical research on the clutch-disc torsional characteristics for the reduction of the torsional vibration at driving. The effects of clutch-damper on diminishing the torsional vibration were investigated experimentally. A dynamic model for the automotive driveline was developed, and the engine torque of the model were evaluated with experimental data. By executing a simulation using the model, it has become possible to obtain the clutch-disc torsional characteristics and the clutch-disc torsional characteristics for reducing the torsional vibration has been suggested. The results are as follows: (1) By exceuting simulations using nonlinear model of four degrees of freedom, a design technique to determine the clutch-disc torsional characteristics for reducing the torsional vibration at driving was developed. (2) The influence of barious torsional characteristics of the clutch has been studied in examining design parameters, which indicates that the domain to minimize the torsional vibration at driving depends on the characteristics of the clutch-damper, i. e., spring constant and hysteresis.

  • PDF

A Study on Clutch-disc Torsional Characteristic for aTorsional Vibration Reduction at Idling (공회전시 비틀림진동 저감을 위한 클러치 비틀림 특성 연구)

  • 홍동표;정태진;김상수;태신호
    • Journal of KSNVE
    • /
    • v.4 no.3
    • /
    • pp.319-325
    • /
    • 1994
  • The flucturation of the engine torque appears to be the major source of the torsional vibration of the automotive driveline. The reduction of this torsional vibration has become a significant problem, due to an increase in the flucturation of the torque of recent light weighted powered engines, along with the requirements of higher performance. The torsional vibration of the automotive driveline can be reduced by soothing the fluctuation by adjusting the torsional characteristics of the clutch-disc. Computer simulation of the engine- input gear train is a useful investigative tool on studying the torsional characteristics of the clutch-disc. In this paper, a dynamic model for the automotive driveline was developed, and the engine torque and drag torque of the model were evaluated withe experimental data. By executing a simulation using the model, it has become possible to obtain the clutch-disc torsional characteristics when the engine is idling and the clucth-disc torsional characteristics for reducing the torsional vibration has been suggested.

  • PDF

A Study on Clutch-disc Characteristics for the Torsional Vibration Reduction of the Drive-Line at Creeping (최저속주행시 동력전달계의 비틀림진동 저감을 위한 클러치특성 연구)

  • Chung, T.J.;Hong, D.P.;Kim, S.S.;Kim, S.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.102-111
    • /
    • 1995
  • The non-periodic fluctuation of the engine torque appears to be the major source of the torsional vibration of the automotive driveline. The reduction of this torsional vibration has become a significant problem along with the requirements of higher performance. The torsional vibration of the automotive driveline can be reduced by smoothing the fluctuation by adjusting the torsional characteristics of the clutch-disc. Computer simulation of the driveline is a useful investigative tool on studying the torsional characteristics of the clutch-disc. In this paper, a dynamic model for the automotive driveline was developed, and the engine torque of the model were evaluated with experimental data. By executing a simulation using the model, it has become possible to obtain the clutch-disc torsional characteristics for reducting the torsional vibration at creeping.

  • PDF

Response characteristics and suppression of torsional vibration of rectangular prisms with various width-to-depth ratios

  • Takai, Kazunori;Sakamoto, Hiroshi
    • Wind and Structures
    • /
    • v.9 no.1
    • /
    • pp.1-22
    • /
    • 2006
  • The response characteristics and suppression of flow-induced vibrations of rectangular prisms with various width-to-depth ratios were experimentally investigated. The prisms were rigid and elastically mounted at both ends to enable constrained torsional vibrations only. The present study focused on torsional vibrations, one of the three types of flow-induced vibrations generated in a rectangular prism. First, the response characteristics of torsional vibrations generated in rectangular prisms were investigated by free-vibration tests. It was found that the response characteristics of torsional vibrations generated in rectangular prisms could be classified into six patterns depending on the width-to-depth ratio. Next, the response characteristics of torsional vibrations observed in the free-vibration tests were reproduced by forced-vibration tests, and the mechanisms by which the three types of flow-induced vibrations, low-speed torsional flutter, vortex excitation and high-speed torsional flutter, are generated in the rectangular prisms were elucidated on the basis of characteristics of fluid forces and visualized flow patterns. Experiments were also carried out to establish an effective method for suppressing flow-induced vibrations generated in the rectangular prisms, and it was found that low-speed torsional flutter and high-speed torsional flutter could be suppressed by placing a small normal plate upstream of the prism, which results in suppression of the alternating rolling-up of the shear layers separating from the leading edges of the prism. It was also found that vortex excitation could be suppressed by placing a splitter plate downstream of the prism, which results in suppression of the generation of wake vortices.

A Detailed Investigation on Coupled Lateral and Torsional Vibration Characteristics in a Speed Increasing Geared Rotor-Bearing system (증속 기어전동 로터-베어링 시스템에서 횡-비틀림 연성진동 특성의 상세 고찰)

  • 이안성;하진웅;최동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.722-728
    • /
    • 2001
  • Applying a general coupled lateral and torsional vibration finite element model of gear pair element this paper intends to look into in detail the coupled lateral and torsional vibration characteristics in a turbo-chiller rotor bearing system, having a bull-pinion speed increasing gear. Investigations have been carried out systematically by comparing the uncoupled and coupled analyses natural vibration frequencies and their mode shapes upon varying the gear mesh stiffness, and also by comparing the strain energies of lateral and torsional vibration modes. Results have shown that some modes may have coupled lateral and torsional mode characteristics as the gear mesh stiffness increases over a certain value, and moreover that their associated dominant modes may be different from their initial modes, i.e., the dominant mode changes from an initial torsional one to a lateral one or from an initial lateral one to a torsional one.

  • PDF

A study on the characteristics of torsional vibration for 4*4 vehicles drivetrain (4륜구동 차량구동계의 비틀림진동 특성에 관한 연구)

  • Choi, Eun-O;Kim, Hei-Song;Hong, Dong-Pyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1957-1964
    • /
    • 1997
  • Torsional vibration is to vibrate strongly when the ignition pulses of the engine is excited with natural frequency of driveline. Torsional vibration like this can cause various noises as rattle and booming. For this study multi-degree of freedom analysis model of torsional vibration, which is combined with mass moment of inertia and torsional spring, was developed toward two wheel drive, four wheel drive and torsional vibration characteristics were compared and analyzed through the natural frequences, mode shapes and frequency response characteristics which was acquired by the simulation of it. The pertinence of that model was proved by the field test and the outcome of the simulations coincided with feeling test. Therefore, four wheel drive simulation model is considered to be useful thing for reducing torsional vibration of driveline and developing full-time four wheel drive vehicles.

A Study on Improvement of Torsional Vibration Characteristics of a Driveline Using a Module-Type-Vibration Analysis System (모듈형 진동 해석시스템을 이용한 구동계 비틀림 진동 특성 개선에 관한 연구)

  • Kim, Ki-Sei;Hwang, Won-Gul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.183-193
    • /
    • 1999
  • In the previous study, a module-type vibration analysis system using modular approach is developed for the purpose of analyzing the torsional vibration of vehicle driveline. In the present paper, the system is utilized to investigate the torsional vibration of the driveline of a middle duty truck. The driveline with driving condition is modeled and the torsional vibration response is simulated. The resonance 45Hz is found at engine speed 900rpm and the resultant vibration is very high. It shows favorable agreements with reference data. The effects of parameter change on torsional vibration are also investigated, so it is clarified that clutch characteristics, axle shaft stiffness are very influential on reduction of vibratio. So the countermeasure is proposed for the clutch characteristics. The reduction of torsonal vibration by 8rad/sec is obtained.

  • PDF

A Detail Investigation on Coupled Lateral and Torsional Vibration Characteristics in a Speed Increasing Geared Rotor-bearing System (증속 기어전동 로터-베어링 시스템에서 횡-비틀림 연성진동 특성의 상세 고찰)

  • 이안성;하진웅;최동훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.116-123
    • /
    • 2002
  • Applying a general coupled lateral and torsional vibration finite element model of gear pair element, this paper intends to look into in detail the coupled lateral and torsional vibration characteristics of a turbo-chiller rotor bearing system, having a bull-pinion speed increasing gear. Investigations have been carried out systematically by comparing the uncoupled and coupled natural frequencies and their mode shapes upon varying the gear mesh stiffness with considerations on rotating speeds, and also by comparing the strain energies of lateral and torsional vibration modes. Results hale shown that some modes may hale the coupled lateral and torsional mode characteristics as the gear mesh stiffness Increases over a certain value, and moreover that their associated dominant modes may be different from their initial modes, j.e., a certain dominant mode may change from an initial torsional one to a lateral one or from an initial lateral one to a torsional one.

Lateral-torsional seismic behaviour of plan unsymmetric buildings

  • Tamizharasi, G.;Prasad, A. Meher;Murty, C.V.R.
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.239-260
    • /
    • 2021
  • Torsional response of buildings is attributed to poor structural configurations in plan, which arises due to two factors - torsional eccentricity and torsional flexibility. Usually, building codes address effects due to the former. This study examines both of these effects. Buildings with torsional eccentricity (e.g., those with large eccentricity) and with torsional flexibility (those with torsional mode as a fundamental mode) demand large deformations of vertical elements resisting lateral loads, especially those along the building perimeter in plan. Lateral-torsional responses are studied of unsymmetrical buildings through elastic and inelastic analyses using idealised single-storey building models (with two degrees of freedom). Displacement demands on vertical elements distributed in plan are non-uniform and sensitive to characteristics of both structure and earthquake ground motion. Limits are proposed to mitigate lateral-torsional effects, which guides in proportioning vertical elements and restricts amplification of lateral displacement in them and to avoid torsional mode as the first mode. Nonlinear static and dynamic analyses of multi-storey buildings are used to validate the limits proposed.

Vibration Characteristics of Langevin-Type Piezoelectric Torsional Transducers (랑주방형 압전 비틀림 변환기의 진동특성)

  • Kwon, Oh-Soo;Kim, Jin-Oh
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.612-617
    • /
    • 2000
  • The vibrational characteristics of Langevin-type piezoelectric torsional transducers have been studied theoretically and experimentally in this paper. The differential equations of piezoelectric torsional motion have been derived in terms of the circumferential displacement and the electric potential. Solutions of the boundary-value problem have yielded the natural frequencies and mode shapes of the transducers. The theoretical solutions have been verified by comparing the numerical results with experimental ones.

  • PDF