• 제목/요약/키워드: Torsional Angle

검색결과 187건 처리시간 0.029초

대형트럭 프레임의 비틀림 강성 평가를 위한 유한요소 모델 개발 (Development of a Finite Element Model for Evaluating Torsional Stiffness of the Frame of a Large Truck)

  • 오재윤;문일동
    • 대한기계학회논문집A
    • /
    • 제29권4호
    • /
    • pp.563-569
    • /
    • 2005
  • This paper develops a finite element model of a cabover type large truck. The finite element model is for evaluating torsional stiffness of the frame of the large truck. The torsional test of the frame is conducted in order to validate the developed finite element model. A load cell is used to measure the load applied to the frame. An angle sensor is used to measure the torsional angle. An actuator is used to apply a load to the frame. A vertical upward load and a vertical downward load are applied to the frame in the torsional test. The frame's torsional stiffness is computed with the measured load and torsional angle in the torsional test. The finite element model of the large truck includes cab, deck and payload, suspension, and tire. Cab, deck, and suspension are modeled not to affect the frame's torsional stiffness. The simulation is performed with the developed finite element model for evaluating the frame's torsional stiffness. The simulation results show a very good correlation with the torsional test results in the tendency of changing of the frame's torsional stiffness not only with the direction of the applying load but also with the amount of the applying load. In addition, the simulation results predict the measured torsional stiffness of the frame with about $5{\%}$ error.

Dynamic torsional response measurement model using motion capture system

  • Park, Hyo Seon;Kim, Doyoung;Lim, Su Ah;Oh, Byung Kwan
    • Smart Structures and Systems
    • /
    • 제19권6호
    • /
    • pp.679-694
    • /
    • 2017
  • The complexity, enlargement and irregularity of structures and multi-directional dynamic loads acting on the structures can lead to unexpected structural behavior, such as torsion. Continuous torsion of the structure causes unexpected changes in the structure's stress distribution, reduces the performance of the structural members, and shortens the structure's lifespan. Therefore, a method of monitoring the torsional behavior is required to ensure structural safety. Structural torsion typically occurs accompanied by displacement, but no model has yet been developed to measure this type of structural response. This research proposes a model for measuring dynamic torsional response of structure accompanied by displacement and for identifying the torsional modal parameter using vision-based displacement measurement equipment, a motion capture system (MCS). In the present model, dynamic torsional responses including pure rotation and translation displacements are measured and used to calculate the torsional angle and displacements. To apply the proposed model, vibration tests for a shear-type structure were performed. The torsional responses were obtained from measured dynamic displacements. The torsional angle and displacements obtained by the proposed model using MCS were compared with the torsional response measured using laser displacement sensors (LDSs), which have been widely used for displacement measurement. In addition, torsional modal parameters were obtained using the dynamic torsional angle and displacements obtained from the tests.

직교이방성 등변앵글부재의 탄성좌굴 (Elastic Buckling Behavior of Orthotropic Equal-leg Angle Members)

  • 김정곤;윤순종
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.54-59
    • /
    • 2001
  • This paper presents an analytical investigation pertaining to the elastic buckling behavior of pultruded fiber reinforced plastic equal-leg angle members under concentric axial compression. The elastic local and global buckling (flexural, torsional, and flexural-torsional) analyses are conducted, respectively, and the analytical results are compared with the existing experimental results. The differences were more than 10%, and the experimental results were higher than the analytical results.

  • PDF

트러스 모델을 이용한 순수비틀림을 받는 철근콘크리트 보의 비틀림 강도 예측 (Prediction on the Torsional Strength of Reinforced Concrete Beams Subjected to Pure Torsion by Truss Model)

  • 박지선;김상우;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.1103-1108
    • /
    • 2001
  • ACI 318-99 predicts the torsional moment of reinforced concrete members by assuming that the angle of diagonal compressive concrete is equal to 45 degree. However, this angle depends on the difference of longitudinal and transverse steel ratios. This paper compares the torsional moments calculated by ACI 318-99 code and a truss model considering compatibility of strains. The comparison indicated that the torsion equation in ACI code underestimated the real torsional moment of reinforced concrete beam in which the ratio of longitudinal reinforcement was larger than that of transverse reinforcement.

  • PDF

후륜 구동 차량의 급가속 시 구동계 진동 저감 (Driveline Vibration Reduction of FR(front engine rear wheel drive) Vehicle at Rapid Acceleration)

  • 김용대
    • 한국소음진동공학회논문집
    • /
    • 제24권8호
    • /
    • pp.592-599
    • /
    • 2014
  • A torsional vibration at driveline happens seriously at rapid vehicle acceleration. The torsional vibration at driveline can be reduced by optimization of joint angle and yoke phase angle of driveline. But, the joint angle of driveline is changed according to vehicle driving condition as acceleration, deceleration, forward and backward driving, so that excessive vibration is transmitted to vehicle body at specific driving condition. Especially under rapid acceleration condition, vibration transmitted to body could be maximized because excitation force at rapid acceleration is bigger than that at normal driving condition due to changed joint angle. The torsional vibration of driveline can be kept at low level by controlling suspension parameter to minimize rigid axle displacement as well as optimizing joint angles considering the vehicle acceleration condition.

유선 함수를 이용한 비틀림 전방압출 공정에 관한 연구 (A Study of the Torsional Forward Extrusion Using the Stream Function.)

  • 이상인;김영호;이종헌
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.329-332
    • /
    • 2002
  • The upper bound analysis by stream function is used to study the torsional forward extrusion. The torsional forward extrusion process not only reduces forming load but also increase optimal die angle. Optimal die angle is determined by the optimization technique. The advantages of this process are that the low capacity of pressing machine can be used and the process with a large die angle can be applied. To verify the theoretical result, we have carried out experiments using model material (plasticine) and FE simulations using DEFORM3D.

  • PDF

대형트럭 프레임의 결합방법에 따른 비틀림 특성이 동적 성능에 미치는 영향 (The Effects of Torsional Characteristics according to Mounting Method of the Frame of a Large-sized Truck on Dynamic Performance)

  • 문일동;김병삼
    • 한국소음진동공학회논문집
    • /
    • 제15권6호
    • /
    • pp.731-737
    • /
    • 2005
  • This paper evaluates dynamic performance of a cab over type large-sized truck for estimating the effects of frame's torsional characteristics using a computer model. The computer model considers two mounting methods of frame, flange mounting and web mounting. Frame is modeled by finite elements using MSC/NASTRAN In order to consider the flexibility of frame. The torsional test of the frame is conducted In order to validate the modeled finite element model. A load cell is used to measure the load applied to the frame. An angle sensor is used to measure the torsional angle. An actuator is used to apply a load to the frame. To estimate the effects of frame's torsional characteristics on dynamic performance, simulations are performed with the flange mounting and web mounting frame. Simulation results show that the web mounting frame's variations of roll angle, lateral acceleration, and yaw rate are larger than the flange mounting frame's variations, especially in the high velocity and the second part of the double lane course.

비틀림 전방압출 공정의 최적다이각에 관한 연구 (A Study on the Optimal die angle of the Torsional Forward Extrusion Process)

  • 이상인;김영호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 제5회 압출 및 인발가공 심포지엄
    • /
    • pp.23-32
    • /
    • 2002
  • The torsional forward extrusion is the process that is executed by punch travel and die rotation. The advantages of having the die rotation on this process are that forming load can be reduced and optimal die angle can be increased. This provides a possibility to extrude cold-worded material where a large extrusion force and die angle are required. Also, this process can improve the material properties owing to the high deformation and uniform strain distribution. The forming load and optimal die angle of this process are determined by the upper bound analysis using stream function and the optimization technique. To verify the theoretical result, we have carried out experiments and FE simulations using DEFORM3D.

  • PDF

Wind Turbine Simulator Including Pitch Angle control, Shaft Torsional Vibration and Tower Effect

  • Abo-Khalil, Ahmed G.;Lee, Dong-Choon
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.411-413
    • /
    • 2005
  • This paper proposes a modeling of wind turbine simulator which includes the dynamic characteristics such as pitch angle control, torsional vibration, and tower effect. Simulation results using PSCAD are provided to show the wind turbine simulator performance.

  • PDF

변형에 기초한 비대칭 벽식 주초의 내진설계 (Deformation Based Seismic Design of Asymmetric Wall Structures)

  • 홍성걸;조봉호
    • 한국지진공학회논문집
    • /
    • 제6권1호
    • /
    • pp.43-53
    • /
    • 2002
  • 기존의 비틀림 설계법은 구조 벽체의 강성은 강도에 무관하게 결정된다는 기본 가정하에 강성을 설계 변수로 비대칭 벽식 구조의 비틀림 효과를 최소화 하기 위한 각 부재의 강도를 결정한다. 이와는 달리 최근의 연구에 의하면 구조 벽체의 강성과 강도는 상호 연관성을 갖는 것으로 알려졌다. 이 경우 벽체의 실제 강성은 비틀림설계를 모두 마친 후에야 결정되므로 강성에 기초하여 비틀림 설계를 수행한다는 것은 모순이다. 이와 같은 문제점을 해결하기 위해 본 논문은 강성이 아닌 변형에 기초한 비대칭 벽식 구조의 비틀림 설계법을 제안한다. 기존의 비틀림 설계법은 탄성 비틀림 응답과 반응수정계수를 이용하여 비탄성 응답에 대한 설계 하중을 간접적으로 계산하지만 변형에 기초한 비틀림 설계법은 변위와 비틀림 회전각을 설계 변수로 비탄성 응답에 대한 설계 하중을 직접적으로 계산한다. 기존의 비틀림 설계법이 비틀림 효과를 최소화하는 것을 목적으로 하는 데 비하여, 변형에 기초한 비틀림 설계법은 내진역량설계법의 기본 개념에 의거하여 설계자가 의도한 비틀림 미케니즘을 발휘하는 데 그 목적을 둔다. 변위와 회전각은 비대칭 구조의 성능수준을 직접적으로 나타내는 성능 지표이므로 본 설계법은 성능기초 내진설계에 효과적으로 사용될 수 있다.