• 제목/요약/키워드: Torsion torque

검색결과 90건 처리시간 0.033초

Mechanical behaviors of concrete-filled rectangular steel tubular under pure torsion

  • Ding, Fa-xing;Sheng, Shi-jing;Yu, Yu-jie;Yu, Zhi-wu
    • Steel and Composite Structures
    • /
    • 제31권3호
    • /
    • pp.291-301
    • /
    • 2019
  • Pure torsion loading conditions were not frequently occurred in practical engineering, but the torsional researches were important since it's the basis of mechanical property researches under complex loading. Then a 3D finite element model with precise material constitutive models was established, and the effectiveness was verified with test data. Parametric studies with varying factors as steel yield strength, concrete strength and sectional height-width ratio, were performed. Internal stress state and the interaction effect between encased steel tube and the core concrete were analyzed. Results indicated that due to the confinement effect between steel tube and core concrete, the torsional strength of CFT columns was greatly improved comparing to plain concrete columns. The steel ratio would greatly influence the torque share between the steel tube and the core concrete. Then the torsional strength calculation formulas for core concrete and the whole CFT column were proposed. The proposed formula could be simpler and easier to use with guaranteed accuracy. Related design codes were more conservative than the proposed formula, but the proposed formula presented more satisfactory agreement with experimental results.

Behavior and crack development of fiber-reinforced concrete spandrel beams under combined loading: an experimental study

  • Ibraheema, Omer Farouk;Abu Bakar, B.H.;Joharib, I.
    • Structural Engineering and Mechanics
    • /
    • 제54권1호
    • /
    • pp.1-17
    • /
    • 2015
  • An experimental investigation is conducted to examine the behavior and cracking of steel fiberre-inforced concrete spandrel L-shaped beams subjected to combined torsion, bending, and shear. The experimental program includes 12 medium-sized L-shaped spandrel beams organized into two groups, namely, specimens with longitudinal reinforcing bars, and specimens with bars and stirrups. All cases are examined with 0%, 1%, and 1.5% steel fiber volume fractions and tested under two different loading eccentricities. Test results indicate that the torque to shear ratio has a significant effect on the crack pattern developed in the beams. The strain on concrete surface follows the crack width value, and the addition of steel fibers reduces the strain. Fibrous concrete beams exhibited improved overall torsional performance compared with the corresponding non-fibrous control beams, particularly the beams tested under high eccentricity.

Behavior of CFRP strengthened RC multicell box girders under torsion

  • Majeed, Abeer A.;Allawi, Abbas A.;Chai, Kian H.;Badaruzzam, Hameedon W. Wan
    • Structural Engineering and Mechanics
    • /
    • 제61권3호
    • /
    • pp.397-406
    • /
    • 2017
  • The use of fiber reinforced polymer (FRP) for torsional strengthening of reinforced concrete (RC) single cell box beams has been analyzed considerably by researchers worldwide. However, little attention has been paid to torsional strengthening of multicell box girders in terms of both experimental and numerical research. This paper reports the experimental work in an overall investigation for torsional strengthening of multicell box section RC girders with externally-bonded Carbon Fiber Reinforced Polymer CFRP strips. Numerical work was carried out using non-linear finite element modeling (FEM). Good agreement in terms of torque-twist behavior, steel and CFRP reinforcement responses, and crack patterns was achieved. The unique failure modes of all the specimens were modeled correctly as well.

Parametric analysis and torsion design charts for axially restrained RC beams

  • Bernardo, Luis F.A.;Taborda, Catia S.B.;Gama, Jorge M.R.
    • Structural Engineering and Mechanics
    • /
    • 제55권1호
    • /
    • pp.1-27
    • /
    • 2015
  • This article presents a theoretical parametric analysis on the ultimate torsional behaviour of axially restrained reinforced concrete (RC) beams. This analysis is performed by using a computing procedure based on a modification of the Variable Angle Truss Model. This computing procedure was previously developed to account for the influence of the longitudinal compressive stress state due to the axial restraint conditions provided by the connections of the beams to other structural members. The presented parametric study aims to check the influence of some important variable studies, namely: torsional reinforcement ratio, compressive concrete strength and axial restraint level. From the results of this parametric study, nonlinear regression analyses are performed and some design charts are proposed. Such charts allow to correct the resistance torque of RC beams (rectangular sections with small height to width ratios) to account for the favorable influence of the axial restraint.

Torsional parameters importance in the structural response of multiscale asymmetric-plan buildings

  • Bakas, Nikolaos;Makridakis, Spyros;Papadrakakis, Manolis
    • Coupled systems mechanics
    • /
    • 제6권1호
    • /
    • pp.55-74
    • /
    • 2017
  • The evaluation of torsional effects on multistory buildings remains an open issue, despite considerable research efforts and numerous publications. In this study, a large number of multiple test structures are considered with normally distributed topological attributes, in order to quantify the statistically derived relationships between the torsional criteria and response parameters. The linear regression analysis results, depict that the center of twist and the ratio of torsion (ROT) index proved numerically to be the most reliable criteria for the prediction of the modal rotation and displacements, however the residuals distribution and R-squared derived for the ductility demands prediction, was not constant and low respectively. Thus, the assessment of the torsional parameters' contribution to the nonlinear structural response was investigated using artificial neural networks. Utilizing the connection weights approach, the Center of Strength, Torsional Stiffness and the Base Shear Torque curves were found to exhibit the highest impact numerically, while all the other torsional indices' contribution was investigated and quantified.

Interaction of internal forces of exterior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Zhisheng
    • Structural Engineering and Mechanics
    • /
    • 제44권2호
    • /
    • pp.197-217
    • /
    • 2012
  • Detailed analysis of internal forces of exterior beam-column joints of RC frames under seismic action is reported in this paper. A formula is derived for calculating the average joint shear from the column shears, and a formula is proposed to estimate torque in eccentric joints induced by seismic action. Average joint shear stress and strain are defined consistently for exterior joints, which can be used to establish joint shear constitutive relationship. Numerical results of shear, bending moment and torque in joints induced by seismic action are presented for a pair of concentric and eccentric exterior connections extracted from a seismically designed RC frame, and two sections located at the levels of beam bottom and top reinforcement, respectively, are identified as the critical joint sections for evaluating seismic joint behavior. A simplified analysis of the effects of joint shear and torque on the flexural strengths of the critical joint sections is made for the two connections extracted from the frame, and the results indicate that joint shear and torque induced by a strong earthquake may lead to "joint-hinging" mechanism of seismically designed RC frames.

저층부에 약층과 비틀림 비정형성을 가진 고층 비정형 RC벽식 구조물의 지진응답 (Seismic Response of a High-Rise RC Bearing-Wall Structure with Irregularities of Weak Story and Torsion at Bottom Stories)

  • 이한선;고동우
    • 한국지진공학회논문집
    • /
    • 제7권6호
    • /
    • pp.81-91
    • /
    • 2003
  • 최근 우리나라의 대도시에서는 주거와 상업기능을 동시에 갖는 복합용도의 건축물이 많이 건설되고 있는데, 이러한 건물은 대부분 하부골조에서 연층, 약층 또는 비틀림 비정형을 띠게 된다. 본 논문의 목적은 이러한 건물의 지진응답을 실험을 통해 관찰하는 것으로서 1:12 축소모델의 진동대 실험을 통해 다음과 같은 결론에 이르렀다. 1) 구조물의 불확실성으로 인한 우발비틀림을 예측하는 것은 정적해석에 의한 방법보다 동적해석에 의한 방법이 더 타당하였다. 2) 횡운동과 비틀림운동이 연관되어 있을 때, 전도모멘트는 지진방향 뿐만 아니라 지진방향에 수직인 방향으로도 상당부분 작용하였으며, 일반적인 해석프로그램에서 수행하는 모드해석법으로는 이와 같은 거동을 예측하기에 부적절하였다. 3) 모드형상과 BST 다이아그램을 통해 대상구조물과 같은 건물의 주요 진동모드와 파괴양상을 쉽게 예측할 수 있었다.

비틀림전단시험에 의한 모래의 강도특성 (Strength Characteristics of Sand in Torsion Shear Tests)

  • 남정만;홍원표;한중근
    • 한국지반공학회지:지반
    • /
    • 제13권4호
    • /
    • pp.149-162
    • /
    • 1997
  • 주응력회전시 모래의 강도특성을 연구하기 위하여 일련의 응력경로에 대해 시험을 실시하였다. 이들 결과는 공시체의 높이에 따라 25cm와 40cm로 분류할 수 있으며 공시체에 작용된 토르 크(Torque)는 시계방향으로만 작용시켰다. 본 연구에서는 비 틀림전단시험시 주응력비에 대한 모래의 강도특성이 조사되었고 그 결과를 Lade의 파괴규준과 비교하여 보았다. 그리고 공시체높 이에 대한 영향을 고려하였다. 이들 시험결과로 부터 모래의 내부마찰각은 축차주응력비 $b:(\sigma_2 -\sigma_s)/(\sigma_2,-\sigma_3)$에 많은 영향을 받는 것으로 나타났다. 모래의 파괴강도는 응력경로에 영향을 받지 않고 현재의 응력상태에 의해 결정 되어지며 25cm와 40cm 높이의 공시체에 대한 비교로부터 단부구속의 영향은 발견할 수 없었다. 그리고 신장력이 작용된 b=0.5 이상인 시험에서는 변형을 국부현상에 의한 Necking현상이 발견되었다.

  • PDF

헬리콥터 테일팬 시험장치 개조 및 운용 (Improvement and Operation of a Helicopter Tail-Fan Performance Test System)

  • 이제동;송근웅;강희정;심정욱;김승범
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계 학술대회논문집(수송기계편)
    • /
    • pp.41-44
    • /
    • 2005
  • This paper described improvement and operation of a 'Tail-Fan' anti-torque performance test system KARI (Korea Aerospace Research Institute) developed a 'Tail-Fan' anti-torque system of a helicopter and a performance test-rig to test the performance of the Tail-Fan. The test-rig was improved for full rotating test in 4300rpm(100%). Machinery and hydraulic parts ware changed to reduce vibration and to increase safety. To find the operation rotating speed for the performance test, vibration test were carried out rising accelerometers on tail gear box. The performance test conditions of the Tail-Fan to avoid a resonance were found from vibration test results. The Tail-Fan operation tests were performed safely frier to carry out performance test.

  • PDF

Modified Equivalent Radius Approach in Evaluating Stress-Strain Relationship in Torsional Test

  • Bae, Yoon-Shin
    • 한국방재학회 논문집
    • /
    • 제8권2호
    • /
    • pp.97-103
    • /
    • 2008
  • Determination of stress-strain relationship in torsional tests is complicated due to nonuniform stress-strain variation occurring linearly with the radius in a soil specimen in torsion. The equivalent radius approach is adequate when calculating strain at low to intermediate strains, however, the approach is less accurate when performing the test at higher strain levels. The modified equivalent radius approach was developed to account for the problem more precisely. This approach was extended to generate the plots of equivalent radius ratio versus strain using modified hyperbolic and Ramberg-Osgood models. Results showed the effects of soil nonlinearity on the equivalent radius ratio curves were observed. Curve fitting was also performed to find the stress-strain relationship by fitting the theoretical torque-rotation relationship to measured torque-rotation relationship.