• Title/Summary/Keyword: Torsion shear test

Search Result 53, Processing Time 0.019 seconds

A Study on the Seismic Response of a Non-earthquake Resistant RC Frame Using Inelastic Dynamic Analyses (비선형 동적 해석을 이용한 비내진 상세 RC 골조의 지진거동 특성 분석)

  • Jeong, Seong-Hoon;Lee, Kwang-Ho;Lee, Soo-Kueon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.381-388
    • /
    • 2010
  • In this study, characteristics of the seismic response of the non-earthquake resistant reinforced concrete (RC) frame were identified. The test building is designed to withstand only gravity loads and not in compliance with modern seismic codes. Smooth bars were utilized for the reinforcement. Members are provided with minimal amount of stirrups to withstand low levels of shear forces and the core concrete is virtually not confined. Columns are slender and more flexible than beams, and beam-column connections were built without stirrups. Through the modeling of an example RC frame, the feasibility of the fiber elementbased 3D nonlinear analysis method was investigated. Since the torsion is governed by the fundamental mode shape of the structure under dynamic loading, pushover analysis cannot predict torsional response accurately. Hence, dynamic response history analysis is a more appropriate analysis method to estimate the response of an asymmetric building. The latter method was shown to be accurate in representing global responses by the comparison of the analytical and experimental results. Analytical models without rigid links provided a good estimation of reduced stiffness and strength of the test structure due to bond-slip, by forming plastic hinges closer to the column ends. However, the absence of a proper model to represent the bond-slip poased the limitations on the current inelastic analysis schemes for the seismic analysis of buildings especially for those with round steel reinforcements. Thus, development of the appropriate bond-slip model is in need to achieve more accurate analysis.

Failure Modes of RC Beams with High Strength Reinforcement (고강도 비틀림보강철근을 사용한 철근콘크리트 보의 파괴모드)

  • Yoon, Seok-Kwang;Lee, Su-Chan;Lee, Do-Hyeong;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.143-150
    • /
    • 2014
  • To avoid abrupt torsional failure due to concrete crushing before yielding of torsional reinforcement and control the diagonal crack width, design codes specify the limitations on the yield strength of torsional reinforcement of RC members. In 2012, Korean Concrete Institute design code increased the allowable maximum yield strength of torsional reinforcement from 400 MPa to 500 MPa based on the analytical and experimental research results. Although there are many studies regarding the shear behavior of RC members with high strength stirrups, limited studies of the RC members regarding the yield strength of torsional reinforcement are available. In this study, twelve RC beams having different yield strength of torsional reinforcement and compressive strength of concrete were tested. The experimental test results indicated that the torsional failure modes of RC beams were influenced by the yield strength of torsional reinforcement and the compressive strength of concrete. The test beams with normal strength torsional reinforcement showed torsional tension failure, while the test beams with high strength torsional reinforcement greater than 480 MPa showed torsional compression failure. Therefore, additional analytical and experimental works on the RC members subjected to torsion, especially the beams with high strength torsional reinforcement, are needed to find an allowable maximum yield strength of torsional reinforcement.

Development of Non-linear Analysis Model for Torsional Behavior of Composite Box-Girder with Corrugated Steel Webs (복부 파형강판을 갖는 복합교량의 비틀림 거동에 대한 비선형 해석 모델 개발)

  • Ko, Hee Jung;Moon, Jiho;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.153-162
    • /
    • 2011
  • Composite box-girder with corrugated steel webs has been widely used in civil engineering practice as an alternative of conventional pre-stressed concrete box-girder because the efficiency of pre-stressing can be increased and weight reduction of superstructure can be achieved by replacing concrete webs as a corrugated steel webs. However, most of previous researches were limited in shear and flexural behavior of such girder so that the torsional behaviors of composite box-girder with corrugated steel webs are not fully understood yet and it needs to be investigated. Some of previous researchers developed the nonlinear theory for torsional analysis of composite box-girder with corrugated steel webs. However, their theories were developed by ignoring the tensile behavior of concrete. Thus, there are certain limitations in analysis of serviceability such as cracking moment and torsional stiffness of the girder. This paper presents the analytical model for torsional behavior of composite box-girder with corrugated steel webs considering tensile behavior of concrete. Based on the proposed analytical model, nonlinear torsional analysis program of composite box-girder with corrugated steel webs was developed. Then, for verification of validation of the developed model, test for the girder was conducted and the results were compared with those of analytical model. Finally, parametric study was conducted and the effects of tensile behavior of concrete on the torsional behavior of the girder were discussed.