• 제목/요약/키워드: Torsion angle

검색결과 152건 처리시간 0.026초

Response of Skew Bridges with permutations of geometric parameters and bearings articulation

  • Fakhry, Mina F.;ElSayed, Mostafa M.;Mehanny, Sameh S.F.
    • Earthquakes and Structures
    • /
    • 제17권5호
    • /
    • pp.477-487
    • /
    • 2019
  • Understanding the behavior of skew bridges under the action of earthquakes is quite challenging due to the combined transverse and longitudinal responses even under unidirectional hit. The main goal of this research is to assess the response of skew bridges when subjected to longitudinal and transversal earthquake loading. The effect of skew on the response considering two- and three- span bridges with skew angles varying from 0 to 60 degrees is illustrated. Various pier fixities (and hence stiffness) and cross-section shapes, as well as different abutment's bearing articulations, are also studied. Finite-element models are established for modal and seismic analyses. Around 900 models are analyzed under the action of the code design response spectrum. $Vis-{\grave{a}}-vis$ modal properties, the higher the skew angle, the less the fundamental period. In addition, it is found that bridges with skew angles less than 30 degrees can be treated as straight bridges for the purpose of calculating modal mass participation factors. Other monitored results are bearings' reactions at abutments, shear and torsion demand in piers, as well as deck longitudinal displacement. Unlike straight bridges, it has been typically noted that skew bridges experience non-negligible torsion and bi-directional pier base shears. In a complementary effort to assess the accuracy of the conducted response spectrum analysis, a series of time-history analyses are applied under seven actual earthquake records scaled to match the code design response spectrum and critical comparisons are performed.

Failure analysis of tubes under multiaxial proportional and non-proportional loading paths

  • Mohammad Hossein Iji;Ali Nayebi
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.289-296
    • /
    • 2023
  • The failure of a thin-walled tube was studied in this paper based on three failure models. Both proportional and non-proportional loading paths were applied. Proportional loading consisted of combined tension-torsion. Cyclic non-proportional loading was also applied. It was a circular out-of-phase axial-shear stress loading path. The third loading path was a combination of a constant internal pressure and a bending moment. The failure models under study were equivalent plastic strain, modified Mohr-Coulomb (Bai-Wierzbicki) and Tearing parameter models. The elasto-plastic analysis was conducted using J2 criterion and nonlinear kinematic hardening. The return mapping algorithm was employed to numerically solve the plastic flow relations. The effects of the hydrostatic stress on the plastic flow and the stress triaxiality parameter on the failure were discussed. Each failure model under study was utilized to predict failure. The failure loads obtained from each model were compared with each other. The equivalent plastic strain model was independent from the stress triaxiality parameter, and it predicted the highest failure load in the bending problem. The modified Mohr-Coulomb failure model predicted the lowest failure load for the range of the stress triaxiality parameter and Lode's angle.

초기 비틀림 각을 갖는 박벽 복합재료 보의 정적 거동 해석 (Structural Behavior of Thin-Walled, Pretwisted Composite Beams)

  • 박일주;홍단비;정성남
    • Composites Research
    • /
    • 제20권6호
    • /
    • pp.15-20
    • /
    • 2007
  • 본 연구에서는 혼합 보 이론을 이용하여 초기 비틀림 각을 갖는 박벽 복합재료 보에 대한 정적 거동 해석을 수행하였다. 보 해석 모델은 복합재료의 연계특성 및 박벽 두께효과, 그리고 비틀림 워핑을 고려하고 있다. 보의 인장-굽힘-비틀림 정적 거동에 대한 혼합적인 요소를 효과적으로 고려함과 동시에 보의 이론 전개를 위해 Reissner의 반보족에너지 함수를 도입하였다. 초기 비틀림 각의 도입에 따른 굽힘 및 비틀림 관련 워핑함수를 특별한 가설에 의존하지 않고 엄밀하게 유도하였다. 개발된 보 이론의 신뢰성을 제고하기 위한 일환으로 탄성적으로 연계된 복합재료 보에 대해 정적 구조해석을 수행하였으며, 해석 결과를 기존의 이론 및 유한요소 해석결과와 비교하여 그 타당성을 확보하였다.

Effects of Self-Traction Exercises on the Vertebral Alignment, Muscle Strength, and Flexibility of Adults in Their Twenties with Scoliosis

  • Kim, Yongmin;Jeon, Changkeun;Yoo, Kyoungtae
    • 국제물리치료학회지
    • /
    • 제10권2호
    • /
    • pp.1810-1817
    • /
    • 2019
  • Background: Effect of cervical and lumbar tractions on the reduction in the angle of curvature and the effect of a correction exercise or a general traction method on balance, muscle strength, pain, and body alignment, however insufficient research has been undertaken on self traction exercises targeting patients with scoliosis. Purpose: To determine the effect of cervical and lumbar tractions on the reduction in the angle of curvature and the effect of a correction exercise or a general traction method on balance, muscle strength, pain, and body alignment. Design: Randomized controlled clinical trial (single blinded) Methods: Twelve adults(20s) with scoliosis were included in this study and performed a traction program that was composed of a 5-min warm-up exercise, a 15-min main exercise, and a 5-min cool-down exercise (25 minutes in total), three times a week for four weeks. The Chiro traction machine was used for the self-traction exercise. Vertebral alignment, muscle strength, and flexibility were compared before and after the intervention using the paired T-test. Results: The scoliosis angle, pelvic torsion, and lumbar extensor were significantly changed by intervention; however, there was no significant difference in flexibility. Conclusion: The results revealed that self-traction exercise activated blood flow through the extension and contraction of muscles, effectively increasing the function of the muscles around the vertebrae.

세 가지 평면 형상에 따른 비틀림 비정형 빌딩구조물의 지진응답 분석 (Seismic Response Analysis of Twisted Buildings with Three Planar Shapes)

  • 이다혜;김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제21권4호
    • /
    • pp.23-30
    • /
    • 2021
  • In this paper, a twisted shape structure with an elevation form favorable to the resistance of vibration caused by wind loads is selected from among the forms of high-rise buildings. The analytical model is a square, triangular, and hexagonal plane with a plane rotation angle of one degree from 0 to 3 degrees per each story. As a result of the analysis, as the twist angle increased, story drift ratio is increased. Responses with different eccentricity rates were shown by analytical models. Therefore planar shapes designed symmetrically to the horizontal axis of X and Y are considered advantageous for eccentricity and torsion deformation. In the case of the bending moment of the column, the response was amplified in the column supporting the base floor, the roof floor, the floor in which the cross-section of the vertical member changes, and the floor having the same number of nodes as the base floor. Finally, the axial force response of the column is determined to be absolutely affected by the gravity load compared to the lateral load.

Effects of Osteotomy Angle on Tibial Angulation and Torsion During CORA-Based Leveling Osteotomy in Toy Breed Dogs: A Computer Modeling-Based Study

  • Jeong, Youngeun;Jeong, Jaemin;Cho, Cheongwoon;Jeong, SeongMok;Lee, Hae Beom
    • 한국임상수의학회지
    • /
    • 제37권4호
    • /
    • pp.175-179
    • /
    • 2020
  • The objective of this study was to determine the effect of osteotomy angle and tibial proximal segment rotation angle on angular and torsional tibial deformities and to assess the trends of these deformities during the rotation of the tibial proximal segment in a center of rotation of angulation (CORA)-based leveling osteotomy (CBLO) by performing computer modeling of the tibia. Four tibias of toy breed dogs with no history of lameness were used in this study. Osteotomies were performed in the proximal tibias at angles of 0°, 10°, 20°, -10°, and -20°, perpendicular to either the proximodistal or craniocaudal tibial axes. The mechanical medial proximal tibial angle (mMPTA) and transcondylar (TC) and distal cranial tibial (CnT) axes were used to measure angular and torsional deformities, respectively. All tibias showed an increase in angular and rotational deformities with an increase in the tibial plateau rotation angle. The tibia with osteotomies performed in the proximodistal and craniocaudal directions showed the highest magnitude of torsional and angular deformities, respectively. The results of this study revealed a tendency of occurrence of angular and torsional deformities with osteotomy performed along the proximodistal and craniocaudal directions in the CBLO.

골반교정에 대한 국내 임상 연구 동향 (An Overview of Clinical Studies on Pelvic Correction in Korea)

  • 백지유;배재룡;안훈모;이재흥
    • 대한의료기공학회지
    • /
    • 제20권1호
    • /
    • pp.118-147
    • /
    • 2020
  • Objective : The purpose of this study is to understand trends of pelvic correction therapy in Korea and to assist research activities on pelvic correction therapy. Also, this study selected and presented indicators for measuring pelvic slope to help ensure consistent studies with uniform indicators in future studies related to pelvic correction. Methods : The following keywords "골반", "골반 교정", "골반 변위" "Pelvic correction" were searched on three specialized search sites (RISS, NAI, DBpia). Trends in pelvic correction therapy were analyzed through the selected researches suitable among these searched researches in an overview format. Results : 1. A total of 7,806 studies were searched and a total of 268 studies were finally selected. 2. Studies began in 1977 and have been actively studied until recently, with 35 studies in 2017 being the most recent trend since 2000. 3. In the results according to the Main Field of Research, the 'Arts and Kinesiology'(113, 42.16%) and 'Medicine and Pharmacy'(103, 38.43%) were the most in order. To the Middle Field, the 'Kinesiology was the largest with 96(35.82%) studies. 4. In the results according to the study design, 'Pre-Post Test(PPT)' was the largest with 107 studies. 5. In the results according to the Intervention, 'Exercise' was the largest with 165 studies, of which 'Pilates' and 'Yoga' in 'Training' was the largest. 6. Among the evaluation method, the 'Pelvic Index' was used 146 times, followed by 'Spinal Alignment (99)', 'Other Joints (93)', and 'Kinetic Specialized Measurement Test (56)'. 7. Among the evaluation methods, the pelvic slope measurement indicators were PT (58), PH (48), Pelvic Torsion (40), Iliac Crest (38), ASIS-PSIS distance/angle (27), and Pelvic Width (I.W., I.L., S.W) (25) in order. 8. The journals that published the most researches were KJSS(Korean Alliance For Health, Physical Education, Recreation, And Dance;9), and JKPT(Korean Physical Therapy;9). Among the University, the Graduate School of Silla University published the most papers (12). 9. The author who published the most studies were Seungjin Park(3), the co-authors were Hoseong Lee, Gideok Park, Seongsu Bae(3), and the Thesis-Director Gyeongok Lee(7). Conclusions : 1. Studies on pelvic correction treatment continue to increase every year. 2. The main academic field of pelvic correction is 'Sports', 'Physical Therapy', and 'Medical Science'. 3. The most chosen research design method in the study on pelvic correction treatment was 'Pre-Post Test(PPT)', primarily as an intermediary, Pilates and yoga during exercise therapy, and then Chiropractic during handcraft were used as multiple frequencies. 4. Among the various measurement method indicators of pelvic correction previously used, multiple frequency was taken up in the order of PT, PH, Pelvic Torsion, iliac crest, ASIS-PSIS distance/angle, and pelvic width (I.W.,I.L.,S.W). Typically, measurements through "ASIS-PSIS angle" are recommended and are considered as the most rational in clinical trials.

달리기 속도의 증가에 따른 운동화 중저의 경도와 신발바닥의 두께가 신발의 볼 굴곡각도에 미치는 영향 (The Influence of Midsole Hardness and Sole Thickness of Sport Shoes on Ball Flex Angle with the Increment of Running Velocity)

  • 곽창수;목승한;권오복
    • 한국운동역학회지
    • /
    • 제15권4호
    • /
    • pp.153-168
    • /
    • 2005
  • The purposes of this study were to determine the influence of midsole hardness and sole thickness of sports shoes on ball flex angle and position with increment of running velocity. The subjects employed for this study were 10 college students who did not have lower extremity injuries for the last one year and whose running pattern was rearfoot striker of normal foot. The shoes used in this study had 3 different midsole hardness of shore A 40, shore A 50, shore A 60 and 3 different sole thickness of 17cm, 19cm, 21cm. The subjects were asked to run at 3 different speed of 2.0m/sec, 3.5m/sec, 5.0m/sec and their motions were videotaped with 4 S-VHS video cameras and 2 high speed video cameras and simultaneously measured with a force platform. The following results were obtained after analysing and comparing the variables. Minimum angle of each ball flex position were increased with the increment of running velocity and shoe sole thickness(P<0.05), but mid-sole hardness did not affect minimum ball flex angle. The position which minimum angle was shown as smallest was 'D'. Midsole hardness and sole thickness did not affect time to each ball flex minimum angle, total angular displacement of ball flex angle, and total angular displacement of torsion angle(P<0.05). The position which minimum angle was appeared to be earliest was similar at walking velocity, and E and F of midfoot region at running velocity. Total angular displacement of ball flex position tended to increase as shifted to heel. It was found that running velocity had effects on ball flex angle variables, but shoe sole thickness partially affected. It would be considered that running velocity made differences between analysis variables at walking and running when designing shoes. Also, it was regarded that shoes would be developed at separated region, because ball flex angle and position was shown to be different at toe and heel region. It is necessary that midsole hardness and thickness required to functional shoes be analyzed in the further study.

Out-of-plane buckling and bracing requirement in double-angle trusses

  • Chen, Shaofan;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • 제3권4호
    • /
    • pp.261-275
    • /
    • 2003
  • Truss members built-up with double angles back-to-back have monosymmetric cross-section and twisting always accompanies flexion upon the onset of buckling about the axis of symmetry. Approximate formulae for calculating the buckling capacity are presented in this paper for routine design purpose. For a member susceptible only to flexural buckling, its optimal cross-section should consist of slender plate elements so as to get larger radius of gyration. But, occurrence of twisting changes the situation owing to the weakness of thin plates in resisting torsion. Criteria for limiting the leg slenderness are discussed herein. Truss web members in compression are usually considered as hinged at both ends for out-of-plane buckling. In case one (or both) end of member is not supported laterally by bracing member, its adjoining members have to provide an elastic support of adequate stiffness in order not to underdesign the member. The stiffness provided by either compression or tension chords in different cases is analyzed, and the effect of initial crookedness of compression chord is taken into account. Formulae are presented to compute the required stiffness of chord member and to determine the effective length factor for inadequately constrained compressive diagonals.

NMR Spectroscopic Assessment of the Structure and Dynamic Properties of an Amphibian Antimicrobial Peptide (Gaegurin 4) Bound to SDS Micelles

  • Park, Sang-Ho;Son, Woo-Sung;Kim, Yong-Jin;Kwon, Ae-Ran;Lee, Bong-Jin
    • BMB Reports
    • /
    • 제40권2호
    • /
    • pp.261-269
    • /
    • 2007
  • The structure and dynamics of a 37-residue antimicrobial peptide gaegurin 4 (GGN4) isolated from the skin of the native Korean frog, Rana rugosa, was determined in SDS micelles by NMR spectroscopy. The solution structure of the peptide in SDS micelles was determined from 352 NOE-derived distance constraints and 22 backbone torsion angle constraints. Dynamic properties for the amide backbone were characterized by $^1H-^{15}N $heteronuclear NOE experiments. The structural study revealed two amphipathic helices spanning residues 2-10 and 16-32 and that the helices were connected by a flexible loop. An intraresidue disulfide bridge was formed between residues Cys31 and Cys37 near the C-terminus. The loop region (11-15) connecting the two helices are were slightly more flexible than these helices themselves. From the fact that since there is no contact NOEs between two helices, it is implied that the GGN4 peptide shows an independent motion of both helices which has an angle of about $ 60^{\circ}-120^{\circ}$ from each other.