• Title/Summary/Keyword: Torsades de Pointes (TdP)

Search Result 5, Processing Time 0.016 seconds

Sensitivity Analysis of dVm/dtMax_repol to Ion Channel Conductance for Prediction of Torsades de Pointes Risk (다형 심실빈맥의 예측을 위한 dVm/dtMax_repol의 이온채널 전도도에 대한 민감도 분석)

  • Jeong, Da Un;Yoo, Yedam;Marcellinus, Aroli;Lim, Ki Moo
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.331-340
    • /
    • 2022
  • Early afterdepolarization (EAD), a significant cause of fatal ventricular arrhythmias including Torsade de Pointes (TdP) in long QT syndromes, is a depolarizing afterpotential at the plateau or repolarization phase in action potential (AP) profile early before completing one pace. AP duration prolongation is related to EAD but is not necessarily accounted for EAD. Several computational studies suggested EAD can form from an abnormality in the late plateau and/or repolarization phase of AP shape. In this sense, we hypothesized the slope during repolarization has the characteristics to predict TdP risk, mainly focusing on the maximum slope during repolarization (dVm/dtmax_repol). This study aimed to predict the sensitivity of dVm/dtmax_repol to ion channel conductances as a TdP risk metric through a population simulation considering multiple effects of simultaneous reduction in six ion channel conductances of gNaL, gKr, gKs, gto, gK1, and gCaL. Additionally, we verified the availability of dVm/dtmax_repol for TdP risk prediction through the correlation analysis with qNet, the representative TdP metric. We performed the population simulations based on the methodology of Gemmel et al. using the human ventricular myocyte model of Dutta et al. Among the sixion channel conductances, dVm/dtmax_repol and qNet responded most sensitively to the change in gKr, followed by gNaL. Furthermore, dVm/dtmax_repol showed a statistically significant high negative correlation with qNet. The dVm/dtmax_repol values were significantly different according to three TdP risk levels of high, intermediate, and low by qNet (p<0.001). In conclusion, we suggested dVm/dtmax_repol as a new biomarker metric for TdP risk assessment.

New in vitro multiple cardiac ion channel screening system for preclinical Torsades de Pointes risk prediction under the Comprehensive in vitro Proarrhythmia Assay concepta

  • Jin Ryeol An;Seo-Yeong Mun;In Kyo Jung;Kwan Soo Kim;Chan Hyeok Kwon;Sun Ok Choi;Won Sun Park
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.3
    • /
    • pp.267-275
    • /
    • 2023
  • Cardiotoxicity, particularly drug-induced Torsades de Pointes (TdP), is a concern in drug safety assessment. The recent establishment of human induced pluripotent stem cell-derived cardiomyocytes (human iPSC-CMs) has become an attractive human-based platform for predicting cardiotoxicity. Moreover, electrophysiological assessment of multiple cardiac ion channel blocks is emerging as an important parameter to recapitulate proarrhythmic cardiotoxicity. Therefore, we aimed to establish a novel in vitro multiple cardiac ion channel screening-based method using human iPSC-CMs to predict the drug-induced arrhythmogenic risk. To explain the cellular mechanisms underlying the cardiotoxicity of three representative TdP high- (sotalol), intermediate- (chlorpromazine), and low-risk (mexiletine) drugs, and their effects on the cardiac action potential (AP) waveform and voltage-gated ion channels were explored using human iPSC-CMs. In a proof-of-principle experiment, we investigated the effects of cardioactive channel inhibitors on the electrophysiological profile of human iPSC-CMs before evaluating the cardiotoxicity of these drugs. In human iPSC-CMs, sotalol prolonged the AP duration and reduced the total amplitude (TA) via selective inhibition of IKr and INa currents, which are associated with an increased risk of ventricular tachycardia TdP. In contrast, chlorpromazine did not affect the TA; however, it slightly increased AP duration via balanced inhibition of IKr and ICa currents. Moreover, mexiletine did not affect the TA, yet slightly reduced the AP duration via dominant inhibition of ICa currents, which are associated with a decreased risk of ventricular tachycardia TdP. Based on these results, we suggest that human iPSC-CMs can be extended to other preclinical protocols and can supplement drug safety assessments.

Pre-clinical QT Risk Assessment in Pharmaceutical Companies - Issues of Current QT Risk Assessment -

  • Takasuna, Kiyoshi; Katsuyoshi, Chiba;Manabe, Sunao
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Since the Committee for Proprietary Medicinal Products (CPMP) of the European Union issued in 1997 a "points to consider" document for the assessment of the potential for QT interval prolongation by non-cardiovascular agents to predict drug-induced torsades de pointes (TdP), the QT liability has become the critical safety issue in the development of pharmaceuticals. As TdP is usually linked to delayed cardiac repolarization, international guideline (ICH S7B) has advocated the standard repolarization assays such as in vitro IKr (hERG current) and in vivo QT interval, or in vitro APD (as a follow up) as the best biomarkers for predicting the TdP risk. However, the recent increasing evidence suggests that the currently used above biomarkers and/or assays are not fully predictive for TdP, but also does not address potential new druginduced TdP due to the selective disruption of hERG protein trafficking to the cell membrane or VT and/or VF with QT shortening. There is, therefore, an urgent need for other surrogate markers or assays that can predict the proarrhythmic potential of drug candidate. In this review, we provide an ideal pre-clinical strategy to predict the potentials of QT liability and lethal arrhythmia of the drug candidates with recent issues in this field in mind, not at the expense of discarding therapeutically innovative drugs.

QTc Prolongation due to Psychotropic Drugs Intoxication and Its Risk Assessment (향정신성 약물 중독에 의한 QTc 연장과 그 위험성에 대한 고찰)

  • Park, Kwan Ho;Hong, Hoon Pyo;Lee, Jong Seok;Jeong, Ki Young;Ko, Seok Hun;Kim, Sung Kyu;Choi, Han Sung
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.18 no.2
    • /
    • pp.66-77
    • /
    • 2020
  • Purpose: The aims of the present study were twofold. First, the research investigated the effect of an individual's risk factors and the prevalence of psychotropic drugs on QTc prolongation, TdP (torsades de pointes), and death. Second, the study compared the risk scoring systems (the Mayo Pro-QT risk score and the Tisadale risk score) on QTc prolongation. Methods: The medical records of intoxicated patients who visited the emergency department between March 2010 and February 2019 were reviewed retrospectively. Among 733 patients, the present study included 426 psychotropic drug-intoxicated patients. The patients were categorized according to the QTc value. The known risk factors of QTc prolongation were examined, and the Mayo Pro-QT risk score and the Tisadale risk score were calculated. The analysis was performed using multiple logistic regression, Spearman correlation, and ROC (receiver operating characteristic). Results: The numbers in the mild to moderate group (male: 470≤QTc<500 ms, female: 480≤QTc<500 ms) and severe group (QTc≥500 ms or increase of QTc at least 60ms from baseline, both sex) were 68 and 95, respectively. TdP did not occur, and the only cause of death was aspiration pneumonia. The statically significant risk factors were multidrug intoxications of TCA (tricyclic antidepressant), atypical antipsychotics, an atypical antidepressant, panic disorder, and hypokalemia. The Tisadale risk score was larger than the Mayo Pro-QT risk score. Conclusion: Multiple psychotropic drugs intoxication (TCA, an atypical antidepressant, and atypical antipsychotics), panic disorder, and hypokalemia have been proven to be the main risk factors of QTc prolongation, which require enhanced attention. The present study showed that the Tisadale score had a stronger correlation and predictive accuracy for QTc prolongation than the Mayo Pro-QT score. As a result, the Tisadale risk score is a crucial assessment tool for psychotropic drug-intoxicated patients in a clinical setting.

Inhibitory Effect of Nicardipine on hERG Channel

  • Chung, Eun-Yong;Cho, Hea-Young;Cha, Ji-Hun;Kwon, Kyoung-Jin;Jeon, Seol-Hee;Jo, Su-Hyun;Kim, Eun-Jung;Kim, Hye-Soo;Chung, Hye-Ju
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.448-453
    • /
    • 2010
  • Drug-induced long QT syndrome is known to be associated with the onset of torsades de pointes (TdP), resulting in a fatal ventricular arrhythmia. QT interval prolongation can result from blocking the human ether-a-go-go-related gene (hERG) channel, which is important for the repolarization of cardiac action potential. Nicardipine, a Ca-channel blocker and antihypertensive agent, has been reported to increase the risk of occasional serious ventricular arrhythmias. We studied the effects of nicardipine on hERG $K^+$ channels expressed in HEK293 cells and Xenopus oocytes. The cardiac electrophysiological effect of nicardipine was also investigated in this study. Our results revealed that nicardipine dose-dependently decreased the tail current of the hERG channel expressed in HEK293 cells with an $IC_{50}$ of 0.43 ${\mu}M$. On the other hand, nicardipine did not affect hERG channel trafficking. Taken together, nicardipine inhibits the hERG channel by the mechanism of short-term channel blocking. Two S6 domain mutations, Y652A and F656A, partially attenuated (Y652A) or abolished (F656A) the hERG current blockade, suggesting that nicardipine blocks the hERG channel at the pore of the channel.