• Title/Summary/Keyword: Torque ripples minimization

Search Result 11, Processing Time 0.029 seconds

Torque Ripple Minimization for Induction Motor Driven by a Photovoltaic Inverter

  • Atia, Yousry
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.679-690
    • /
    • 2009
  • The paper presents a new photovoltaic inverter for stand-alone induction motor application. The proposed system is composed of two stages. First stage is for the photovoltaic dc power feeding and second stage is dedicated to the motor-inverter subsystem and control technique. A direct torque control (DTC) with a novel switching strategy for motor torque ripple minimization is introduced. The novel DTC strategy is based on selecting a suitable voltage vector group for motor torque ripple minimization. A three-level voltage source inverter (VSI) is used instead of a two level inverter because the first has more available vectors and lower ripples in the output current and flux than the second, thus it has lower torque ripples. The photovoltaic array and battery bank are sized and the configuration is indicated based on sun-hour methodology. Simulation results show a comparison between three systems; two level VSI with conventional DTC strategy, three level VSI with conventional DTC, and the proposed system that has a novel DTC switching strategy applied to three level VSI. The results show that the proposed system has lower ripples in the current, flux and torque of the motor.

Torque Ripples Minimization of DTC IPMSM Drive for the EV Propulsion System using a Neural Network

  • Singh, Bhim;Jain, Pradeep;Mittal, A.P.;Gupta, J.R.P.
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.23-34
    • /
    • 2008
  • This paper deals with a Direct Torque Control (DTC) of an Interior Permanent Magnet Synchronous Motor (IPMSM) for the Electric Vehicle (EV) propulsion system using a Neural Network (NN). The Conventional DTC with optimized switching lookup table and three level torque controller generates relatively large torque ripples in an electric vehicle motor drive. For reducing the torque ripples, a three level torque controller is hereby replaced by the five level torque controller. Furthermore, the switching lookup table of the five level torque controller based DTC is replaced with a Neural Network. These DTC schemes of an IPMSM drive are simulated using MATLAB/SIMULINK. The simulated results are compared with the conventional DTC and it is found that the ripples in the torque, as well as in the stator current, are reduced drastically.

Torque Ripple Minimization Scheme Using Torque Sharing Function Based Fuzzy Logic Control for a Switched Reluctance Motor

  • Ro, Hak-Seung;Lee, Kyoung-Gu;Lee, June-Seok;Jeong, Hae-Gwang;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.118-127
    • /
    • 2015
  • This paper presents an advanced torque ripple minimization method of a switched reluctance motor (SRM) using torque sharing function (TSF). Generally, TSF is applied into the torque control. However, the conventional TSF cannot follow the expected torque well because of the nonlinear characteristics of the SRM. Moreover, the tail current that is generated at a high speed motor drive makes unexpected torque ripples. The proposed method combined TSF with fuzzy logic control (FLC). The advantage of this method is that the torque can be controlled unity at any conditions. In addition, the controller can track the torque under the condition of the wrong TSF. The effectiveness of the proposed algorithm is verified by the simulations and experiments.

Torque Ripple Minimization for Switched Reluctance Motors Using a Fuzzy Logic and Sliding Mode Control (퍼지 이론과 슬라이딩모드 제어를 이용한 스위치드 릴럭턴스 전동기의 토크리플 저감)

  • Yoon, Jae-Seung;Kim, Dong-Hee;Shin, Hye-Ung;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1384-1392
    • /
    • 2014
  • This paper presents a torque ripple reduction algorithm for the switched reluctance motor drives using the fuzzy logic and the sliding mode control. A turn-on angle controller based on the fuzzy logic determines the optimal turn-on angle. In addition, a sliding mode torque control (SMTC) methods reduces torque ripples instantaneously in the commutation region. The proposed algorithm does not require complex system models considering nonlinear magnetizing or demagnetizing periods of the phase current. According to the rotor speed and torque, the proposed controller changes the turn-on angle and reference torque instantaneously until the torque ripples are minimized. The simulation and experimental results verify the validity of minimizing the torque ripple performance.

New Phase Energization Strategies for the Minimization of Hybrid Step Motor Torque Ripples (하이브리드 스텝모우터의 토오크 리플 최소화를 위한 새로운 상여자방식)

  • Kim, Yoon-Ho;Yoon, Byung-Do;Eum, Tae-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.133-136
    • /
    • 1991
  • New phase-energization strategies are proposed to minimize torque ripple of closed-loop controlled 2-phase Bifilar Hybrid step motors. Lead angle and conduction angles are important parameters in minimizing torque ripple factors. The phase-energization control strategy that minimizes torque ripples for the given average torque is proposed. In this paper, Fourier series are applied to produce the average torque. The strategy is performed by controlling both lead angle and conduction angle of the input voltage wave-form for each phase.

  • PDF

Copper Loss and Torque Ripple Minimization in Switched Reluctance Motors Considering Nonlinear and Magnetic Saturation Effects

  • Dowlatshahi, Milad;Saghaiannejad, Sayed Morteza;Ahn, Jin-Woo;Moallem, Mehdi
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.351-361
    • /
    • 2014
  • The discrete torque generation mechanism and inherently nonlinear magnetic characterization of switched reluctance motors lead to unacceptable torque ripples and limit the application of these motors. In this study, a phase current profiling technique and torque sharing function are proposed in consideration of magnetic saturation effects and by minimizing power loss in the commutation area between the adjacent phases. Constant torque trajectories are considered in incoming and outgoing phase current planes based on nonlinear T-i-theta curves obtained from experimental measurements. Optimum points on constant torque trajectories are selected by improving drive efficiency and minimizing copper loss in each rotor position. A novel analytic invertible function is introduced to express phase torque based on rotor position and its corresponding phase current. The optimization problem is solved by the proposed torque function, and optimum torque sharing functions are derived. A modification method is also introduced to enhance the torque ripple-free region based on simple logic rules. Compared with conventional torque sharing functions, the resultant reference current from the proposed method has less peak and effective values and exhibits lower copper loss. Experimental and simulation results from a four-phase 4 KW 8/6 SRM validate the effectiveness of the proposed method.

Torque Ripple Minimization of BLDC Motor Including Flux-Weakening Region (약계자영역을 포함한 BLDC 전동기의 새로운 토크 리플 최소화 방법)

  • 원태현;박한웅;이만형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.445-454
    • /
    • 2002
  • Torque ripple control of brushless DC motors has been the persisting issue of the servo drive systems in which the speed fluctuation, vibration and acoustic noise should be minimized. In this paper, a novel approach to achieve the ripple-free torque control with maximum efficiency based on the d-q reference frame is presented and analyzed. The proposed approach can provide the optimized phase current waveforms over wide speed range incorporating cogging torque compensation without an access to the neutral point of the motor windings. Moreover, the undesirable errors caused by the assumptions such as 3 phase balance or symmetry of the phase back EMF between electrical cycles, which are related with the manufacturing imperfections, can be also eliminated. As a result, the proposed approach provides a simple and clear way to obtain the optimal motor excitation currents. A hysteresis current control system is employed to produce high-frequency electromagnetic torque ripples for compensation. The validity and applicability of the proposed control scheme to real situations are verified through the simulations and experimental results.

Design and Analysis of Rolled Rotor Switched Reluctance Motor

  • Eyhab, El-Kharashi
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.472-481
    • /
    • 2006
  • In the conventional SRM with multi-rotor teeth, the air gap must be very small in order to drive the SRM in the saturation region that is necessary for high output torque. However, this leads to the problem of overheating; particularly in the case of a small-size SRM This paper discusses the design of a new type of SRM, namely the rolled rotor SRM. This new type does not require more than a single region of a very small airgap. This solves the overheating problem in the small size SRM. Moreover, the use of the rolled rotor, instead of the conventional toothed rotor, grades the airgap region in a fashion that gives a smooth variation in the reluctance and smooth shapes of both current and torque. The latter functional behavior is required in many applications such as servo applications. The paper first addresses general design steps of the rolled rotor SRM then proceeds to the simulation results of the new SRM in order to evaluate the advantages gained from the new design. In addition, this paper compares the torque ripples obtained from the new design to its equivalent conventional one.

Reference Frame Approach for Torque Ripple Minimization of BLDCM over Wide Speed Range Including Cogging Torque (코깅 토크를 포함한 광역 속도 영역상의 BLDCM의 토크 리플 최소화를 위한 기준 프레임 접근기법)

  • Park, Han-Woong;Cho, Sung-Bae;Won, Tae-Hyun;Kwon, Soon-Jae;Ham, Byung-Woon;Kim, Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.33-36
    • /
    • 2001
  • Torque ripple control of brush less DC motor has been the main issue of the servo drive systems in which the speed fluctuation, vibration and acoustic noise should be minimized. Most methods for suppressing the torque ripples require Fourier series analysis and either the iterative or least mean square minimization. In this paper, the novel approach to achieve the ripple-tree torque control with maximum efficiency based on the d-q-0 reference frame is presented. The proposed method optimize the reference phase current waveforms including even the case of 3 phase unbalanced condition, and the motor winding currents are controlled to follow up the optimized current waveforms by delta modulation technique. As a result, the proposed approach provides a simple and clear way to obtain the optimal motor excitation currents. The validity and practical applications of the proposed control scheme are verified through the simulations and experimental results.

  • PDF

Compensation Algorithm for Periodic Torque Ripple of AC Motors (교류전동기의 주기적인 토크리플 보상알고리즘)

  • Kim, Byong-Seob;Choi, Jong-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.551-557
    • /
    • 2006
  • The electrical frequency synchronized periodic torque ripple exits in the AC motor. There are various sources of torque ripple in AC motor such as current measurement error, dead time, etc. This paper proposes a compensation algorithm which suppresses undesired side effect known as the periodic torque ripple of AC motor. The torque ripple compensation classified as the speed ripple detector and torque ripple compensator. This paper proves a speed ripple minimization at steady state by analysis of torque ripple compensator. A new speed ripple detector improves the performance of torque ripple compensation algorithm. The simulation and experimental results show that the compensation algorithm is effective and the torque ripple compensation method improves the performance of speed ripple detector by eliminating torque ripples effectively.