• 제목/요약/키워드: Torque predictive control

검색결과 40건 처리시간 0.026초

모델 예측 제어 기법을 이용한 토크벡터링과 후륜조향 통합 제어 (Integrated Control of Torque Vectoring and Rear Wheel Steering Using Model Predictive Control)

  • 차현수;김자유;이경수
    • 자동차안전학회지
    • /
    • 제14권4호
    • /
    • pp.53-59
    • /
    • 2022
  • This paper describes an integrated control of torque vectoring and rear wheel steering using model predictive control. The control objective is to minimize the yaw rate and body side slip angle errors with chattering alleviation. The proposed model predictive controller is devised using a linear parameter-varying (LPV) vehicle model with real time estimation of the varying model parameters. The proposed controller has been investigated via computer simulations. In the simulation results, the performance of the proposed controller has been compared with uncontrolled cases. The simulation results show that the proposed algorithm can improve the lateral stability and handling performance.

Improved FOC of IPMSM using Finite-state Model Predictive Current Control for EV

  • Won, Il-Kuen;Hwang, Jun-Ha;Kim, Do-Yun;Choo, Kyoung-Min;Lee, Soon-Ryung;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1851-1863
    • /
    • 2017
  • Interior permanent magnet synchronous motor (IPMSM) is most commonly used in the automotive industry as a traction motor for electric vehicle (EV). In electric vehicle, the torque output rapidly changes according to the operation of the accelerator and the braking of the driver. The transient torques are thus generated very frequently in accordance with the variable speed control of the driver. Therefore, in this paper, a method for improving the torque response in the transient states of IPMSM is proposed. In order to complement the disadvantages of the conventional PI current controller in the field oriented control (FOC), the finite-state model predictive current control and 2D-LUT is applied to improve the torque response at the torque transient period. Simulation and experiment results are given to verify the reliability of the proposed method.

매트릭스 컨버터로 구동되는 유도전동기의 직접토크제어를 위한 모델예측제어 기반의 SVM 기법 (Model Predictive Control for Induction Motor Drives Fed by a Matrix Converter)

  • 최우진;이은실;송중호;이영일;이교범
    • 제어로봇시스템학회논문지
    • /
    • 제20권9호
    • /
    • pp.900-907
    • /
    • 2014
  • This paper proposes a MPC (Model Predictive Control) method for the torque and flux controls of induction motor. The proposed MPC method selects the optimized voltage vector for the matrix converter control using the predictive modeling equation of the induction motor and cost function. Hence, the reference voltage vector that minimizes the cost function of the torque and flux error within the control period is selected and applied to the actual system. As a result, it is possible to perform the torque and flux control of induction motor using only the MPC controller without a PI (Proportional-Integral) or hysteresis controller. Even though the proposed control algorithm is more complicated and has lots of computations compared with the conventional MPC, it can perform torque ripple reduction by synthesizing voltage vectors of various magnitude. This feature provides the reduction of amount of calculations and the improvement of the control performance through the adjustment of the number of the unit vectors n. The proposed control method is validated through the PSIM simulation.

낮은 스위칭 주파수로 구동되는 유도전동기의 모델예측토크제어 (MPTC of Induction Motor Driven with Low Switching Frequency)

  • 최유현;한정호;송중호
    • 조명전기설비학회논문지
    • /
    • 제29권3호
    • /
    • pp.61-68
    • /
    • 2015
  • When medium and large induction motors are driven by 2-level inverters with low switching frequency, induction motors provoke deteriorated performances resulted from large torque ripples, flux ripples, and large current distortion. Model predictive torque control(MPTC) for a fast torque control of induction motors is also suffered from large torque ripples when the induction motors are fed by 2-level inverters that are based on 6 active voltage vectors with low switching frequency restricted. To solve this problem, this paper proposes a new MPTC method based on both a 12 active voltage vector and an optimized duty ratio calculation. The proposed control strategy illustrates its effectiveness under the various operating conditions through simulation works.

Model Predictive Torque Control of Surface Mounted Permanent Magnet Synchronous Motor Drives with Voltage Cost Functions

  • Zhang, Xiaoguang;Hou, Benshuai;He, Yikang;Gao, Dawei
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1369-1379
    • /
    • 2018
  • In this paper, a model predictive torque control (MPTC) without the use of a weighting factor for surface mounted permanent-magnet synchronous machine (SPMSM) drive systems is presented. Firstly, the desired voltage vector is predicted in real time according to the principles of deadbeat torque and flux control. Then the sector of this desired voltage vector is determined. The complete enumeration for testing all of the feasible voltage vectors is avoided by testing only the candidate vectors contained in the sector. This means that only two voltage vectors in the sector need to be tested for selecting the optimal voltage vector in each control period. Thus, the calculation time can be reduced when compared with the conventional enumeration method. On the other hand, a novel cost function that only includes the dq-axis voltage errors between the desired voltage and candidate voltage is designed to eliminate the weighting factor used in the conventional MPTC. Thus, the control complexity caused by the tuning of the weighting factor is effectively decreased when compared with the conventional MPTC. Simulation and experimental investigation have been carried out to verify the proposed method.

전기자동차용 유도전동기를 위한 유한제어요소 모델예측 토크제어 (Finite Control Set Model Predictive Control with Pulse Width Modulation for Torque Control of EV Induction Motors)

  • 박효성;고병권;이영일
    • 전기학회논문지
    • /
    • 제65권12호
    • /
    • pp.2189-2196
    • /
    • 2016
  • This paper proposes a new finite control set-model predictive control (FCS-MPC) method for induction motors. In the method, the reference state that satisfies the given torque and rotor flux requirements is derived. Cost indices for the FCS-MPC are defined using the state tracking error, and a linear matrix inequality is formulated to obtain a proper weighting matrix for the state tracking error. The on-line procedure of the proposed FCS-MPC comprises of two steps: select the output voltage vector of the two level inverter minimizing the cost index and compute the optimal modulation factor of the minimizing output voltage vector in order to reduce the state tracking error and torque ripple. The steady state tracking error is removed by using an integrator to adjust the reference state. The simulation and experimental results demonstrated that the proposed FCS-MPC shows good torque, rotor flux control performances at different rotating speeds.

An Improved Predictive Functional Control with Minimum-Order Observer for Speed Control of Permanent Magnet Synchronous Motor

  • Wang, Shuang;Fu, Junyong;Yang, Ying;Shi, Jian
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.272-283
    • /
    • 2017
  • In this paper, an improved predictive functional control (PFC) scheme for permanent magnet synchronous motor (PMSM) control system is proposed, on account of the standard PFC method cannot provides a satisfying disturbance rejection performance in the case of strong disturbances. The PFC-based method is first introduced in the control design of speed loop, since the good tracking and robustness properties of the PFC heavily depend on the accuracy of the internal model of the plant. However, in orthodox design of prediction model based control method, disturbances are not considered in the prediction model as well as the control design. A minimum-order observer (MOO) is introduced to estimate the disturbances, which structure is simple and can be realized at a low computational load. This paper adopted the MOO to observe the load torque, and the observations are then fed back into PFC model to rebuild it when considering the influence of perturbation. Therefore, an improved PFC strategy with torque compensation, called the PFC+MOO method, is presented. The validity of the proposed method was tested via simulation and experiments. Excellent results were obtained with respect to the speed trajectory tracking, stability, and disturbance rejection.

예측전류제어가 적용된 IPMSM 구동 시스템의 제어기 성능 분석 (The Performance Analysis of IPMSM Drive System applied Predictive Current Control)

  • 황준하;원일권;김도윤;김영렬;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.63-64
    • /
    • 2015
  • The control of IPMSM(Interior Permanent Magnet Synchronous Motor) for electric vehicle is important to track torque reference depended on accelerator. This paper executes IPMSM control applied the predictive current control which has good dynamic characteristic and, compare PI control with predictive current control to verify dynamic characteristic through simulation.

  • PDF

임팩트햄머 드릴의 슬립토크 설계 제어를 위한 분석 프로세스 고찰 (Study on Analysis Process for Slip Torque Design Control of Impact Hammer Drills)

  • 김승현;권상엽;고동신;허덕재;동광호
    • 한국정밀공학회지
    • /
    • 제33권5호
    • /
    • pp.401-407
    • /
    • 2016
  • This paper describes the derivation methodology of the working torque predictive model that can be used in the initial design stages of the impact hammer tool. The working torque control mechanism is designed, taking into account various factors, such as the force of the spring and friction. Firstly, the analysis dynamic model for working environments was modeled as an additional bush and spring, and verified by comparing the test results of the working torque. Secondly, the main performance parameters of the working torque were theoretically defined by analyzing the operating mechanism. The equation to predict the working torque was derived using the dynamic analysis results according to the value changes of the parameters. The prediction equation of the working torque was validated by comparing the predicted results with the experimental data. The error difference between the experimental data and the predictive model results was found to be 8.62%.

A Novel Direct Torque Control of Induction Motor

  • Park J. H.;Lee K. J.;Choi J. W.;Kim H. G.;Chun T. W.;Nho E. C.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.423-427
    • /
    • 2001
  • This paper describes a control scheme for direct torque and flux control of Induction machines using space vector modulation. The proposed predictive flux control scheme has directly calculated the reference voltage space vector based on Stator flux errors in order to control the torque and flux. This proposed control scheme has not the requirement of a separate current error, thereby improving transient performance and also has the advantage of less torque ripple in steady state with a fixed switching period. The effect of proposed method has been proven by simulations. It is concluded that the proposed control topology produces better results for steady state operation than the classical direct torque control.

  • PDF