• Title/Summary/Keyword: Torque pattern

Search Result 137, Processing Time 0.027 seconds

Effect of Geometric Variation on Starting Characteristic Analysis of H-Darrieus Blades (H-다리우스 블레이드의 형상 변화에 따른 기동특성 해석)

  • Jeong, Jin-Hwan;Kang, Ki-Won;Kim, Berm-Soo;Lee, Jang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.45-49
    • /
    • 2011
  • This paper describes the numerical analysis of effect of geometric variation on the straight-bladed vertical axis wind turbine. Geometry variation is performed with pockets on the blades. The results presented in this numerical analysis show the general flow pattern of near the bladed, and azimuth angle variation on stating torque value. It is shown that the pockets makes torque higher about 80%.

Effects of Occlusal Appliance on the Mandibular Position and the Mandibular Rotational Torque Movement during Speech (교합장치가 발음시 하악위 및 하악의 비틀림 회전운동에 미치는 영향)

  • Kim, Moon-Gyu;Han, Kyung-Soo;Kim, Jong-Young;Yang, Keun-Young
    • Journal of Oral Medicine and Pain
    • /
    • v.26 no.1
    • /
    • pp.59-73
    • /
    • 2001
  • This study was performed to investigate the effects of occlusal appliance on the mandibular position and the mandibular rotational torque movement during speech. For this study, 20 patients with temporomandibular disorders(TMDs) and 20 normal subjects without any signs and symptoms in the masticatory system were selected as the patient group and as the normal group, respectively. Biopak $system^{(R)}$(Bioresearch Inc., Milwaukee, USA) and a sentence of 'Sue is missing her house' were used for recording and for observing of speech pattern. There were five mandibular positions observed in this study, that is, mandibular rest position, 'ssi', 'her', 'ha', and 's' speech position. In each position, slant and A-P distance in sagittal plane, vertical distance and lateral distance in frontal plane were measured. Amount of the mandibular rotational torque movement were measured at 'her', 'ha' speech position and for all through speech movement. Centric relation splint(CRS) was placed in both groups, but anterior or posterior bite plane were placed in normal subjects only. Data collected were processed and analysed by SPSS windows program. The results of this study were as follows : 1. Mandibular positions in both groups were not different before adaptation, with CRS, and after removal, but total amount of the mandibular rotational torque movement was greater in patients. 2. Mandible was slightly placed anteriorly with CRS at 'her' and 'ha' speech position in patients, but was placed anteriorly at all the five positions in normal subjects. 3. Difference with type of occlusal appliance in normal subjects were noted only for vertical distance at 'ssi' and 'ha' speech position, and the distance with CRS were more than that with posterior bite plane. 4. Mandibular rotational torque movement at 'her' and 'ha' speech position was greater in patients, but the difference was disappeared after appliance removal. And the torque movement was greater at 'ha' speech position than that at 'her' speech position in frontal plane. It could be concluded that the adaptation of occlusal appliance showed a tendency to locate the mandible anteriorly during speech in both groups, but did not affect total mandibular rotational torque movement which was greater in patients.

  • PDF

Comparison of CAD/CAM abutment and prefabricated abutment in Morse taper internal type implant after cyclic loading: Axial displacement, removal torque, and tensile removal force

  • Yi, Yuseung;Heo, Seong-Joo;Koak, Jai-Young;Kim, Seong-Kyun
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.6
    • /
    • pp.305-312
    • /
    • 2019
  • PURPOSE. The purpose of this study was to compare computer-aided design/computer-aided manufacturing (CAD/CAM) abutment and prefabricated abutment in Morse taper internal connection type implants after cyclic loading. MATERIALS AND METHODS. The study was conducted with internal type implants of two different manufacturers (Group Os, De). Fourteen assemblies were prepared for each manufacturer group and divided into 2 groups (n=7): prefabricated abutments (Os-P, De-P) and CAD/CAM abutments (Os-C, De-C). The amount of axial displacement and the removal torque values (RTVs) were measured before and after cyclic loading (106 cycles, 3 Hz with 150 N), and the tensile removal force to dislodge the abutments was measured after cyclic loading. A repeated measures ANOVA and a pattern analysis based on the logarithmic regression model were conducted to evaluate the effect of cyclic loading on the axial displacement. The Wilcoxon signed-rank test and the Mann-Whitney test was conducted for comparison of RTV reduction% and tensile removal forces. RESULTS. There was no significant difference between CAD/CAM abutments and prefabricated abutments in axial displacement and tensile removal force; however, significantly greater RTV reduction% after cyclic loading was observed in CAD/CAM abutments. The correlation among the axial displacement, the RTV, and the tensile removal force was not significant. CONCLUSION. The use of CAD/CAM abutment did not significantly affect the amount of axial displacement and tensile removal force, but presented a significantly greater removal torque reduction% than prefabricated abutments. The connection stability due to the friction at the abutment-implant interface of CAD/CAM abutments may not be different from prefabricated abutment.

Torque control during lingual anterior retraction without posterior appliances

  • Mo, Sung-Seo;Kim, Seong-Hun;Sung, Sang-Jin;Chung, Kyu-Rhim;Chun, Yun-Sic;Kook, Yoon-Ah;Nelson, Gerald
    • The korean journal of orthodontics
    • /
    • v.43 no.1
    • /
    • pp.3-14
    • /
    • 2013
  • Objective: To evaluate the factors that affect torque control during anterior retraction when utilizing the C-retractor with a palatal miniplate as an exclusive source of anchorage without posterior appliances. Methods: The C-retractor was modeled using a 3-dimensional beam element (0.9-mm-diameter stainless-steel wire) attached to mesh bonding pads. Various vertical heights and 2 attachment positions for the lingual anterior retraction hooks (LARHs) were evaluated. A force of 200 g was applied from each side hook of the miniplate to the splinted segment of 6 or 8 anterior teeth. Results: During anterior retraction, an increase in the LARH vertical height increased the amount of lingual root torque and intrusion of the incisors. In particular, with increasing vertical height, the tooth displacement pattern changed from controlled tipping to bodily displacement and then to lingual root displacement. The effects were enhanced when the LARH was located between the central and lateral incisors, as compared to when the LARH was located between the lateral incisors and canines. Conclusions: Three-dimensional lingual anterior retraction of the 6 or 8 anterior teeth can be accomplished using the palatal miniplate as the only anchorage source. Using LARHs at different heights or positions affects the quality of torque and intrusion.

Kinesiology Based Human-like Walking Pattern Design for a Bipedal Robot (인체운동학에 기반한 이족로봇의 인간형 걸음새 설계)

  • Park, Jin-Hee;Kwon, Sang-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.659-667
    • /
    • 2011
  • The study of bipedal robot is towards similar shape and function with human. In this paper, we propose a human-like walking pattern compatible to the flexible foot with toe and heel structure. The new walking pattern for a bipedal robot consists of ZMP, center of mass (CoM), and ankle trajectory and is drawn by considering human kinesiology. First, the ZMP trajectory moves forward without stopping at a point even in the single support phase. The corresponding CoM trajectory to the ZMP one is derived by solving differential equations. As well, a CoM trajectory for the vertical axis is added by following the idea of human motion. The ankle trajectory closely mimics the rotational motion of human ankles during taking off and landing on the ground. The advantages of the proposed walking pattern are demonstrated by showing improved stability, decreased ankle torque, and the longer step length capability. Specifically, it is interesting to know that the vertical CoM motion is able to compensate for the initial transient response.

Flow Simulation of a $45^{\circ}$ Pitched Paddle Type Mixer ($45^{\circ}$ Pitched Paddle 형 교반기 내부 유동 해석)

  • Chang J.;Hur N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.109-114
    • /
    • 2000
  • Mechanical agitation is widely used in industrial process engineering. In the present study, peformed was a numerical simulation on flows in a $45^{\circ}$ Pitched Paddle Type mixer. Through a CFD technique, effects of the position of the impeller on resultant flow pattern was studied. Results of computed torque on impeller to maintain the flow are also compared to the experimental data, and showed good qualitative agreements.

  • PDF

A Gear Changing Technique of an Inverter for Variable Speed Drive Using Hybrid PWM (하이브리드 PWM에 의한 인버터 가변속 운전시의 패턴절환기법)

  • 서영민;박영진;홍순찬
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.64-67
    • /
    • 1998
  • This paper proposes the hybrid PWM scheme that can obtain less harmonic characteristics in GTO inverters. By employing the variable of the dc-link voltage Vdc, the hybrid PWM pattern can ideally compensate the dc input fluctuation together with selected harmonics elimination. The transient behavior, which the magnetic flux and torque are altered and the large current flows instantly, may be produced when the mode change. To reduce such an undesirable transient behavior, it is also presented the technique for the gear changing of inverter operated with the hybrid PWM. The results are verified by simulations and experiments.

  • PDF

Kinematic and Dynamic Analyses of Human Arm Motion

  • Kim, Junghee;Cho, Sungho;Lee, Choongho;Han, Jaewoong;Hwang, Heon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.138-148
    • /
    • 2013
  • Purpose: Determining an appropriate path is a top priority in order for a robot to maneuver in a dynamically efficient way especially in a pick-and-place task. In a non-standardized work environment, current robot arm executes its motion based on the kinematic displacements of joint variables, though resulting motion is not dynamically optimal. In this research we suggest analyzing and applying motion patterns of the human arm as an alternative to perform near optimum motion trajectory for arbitrary pick-and-place tasks. Methods: Since the motion of a human arm is very complicated and diverse, it was simplified into two links: one from the shoulder to the elbow, and the other from the elbow to the hand. Motion patterns were then divided into horizontal and vertical components and further analyzed using kinematic and dynamic methods. The kinematic analysis was performed based on the D-H parameters and the dynamic analysis was carried out to calculate various parameters such as velocity, acceleration, torque, and energy using the Newton-Euler equation of motion and Lagrange's equation. In an attempt to assess the efficacy of the analyzed human motion pattern it was compared to the virtual motion pattern created by the joint interpolation method. Results: To demonstrate the efficacy of the human arm motion mechanical and dynamical analyses were performed, followed by the comparison with the virtual robot motion path that was created by the joint interpolation method. Consequently, the human arm was observed to be in motion while the elbow was bent. In return this contributed to the increase of the manipulability and decrease of gravity and torque being exerted on the elbow. In addition, the energy required for the motion decreased. Such phenomenon was more apparent under vertical motion than horizontal motion patterns, and in shorter paths than in longer ones. Thus, one can minimize the abrasion of joints by lowering the stress applied to the bones, muscles, and joints. From the perspectives of energy and durability, the robot arm will be able to utilize its motor most effectively by adopting the motion pattern of human arm. Conclusions: By applying the motion pattern of human arm to the robot arm motion, increase in efficiency and durability is expected, which will eventually produce robots capable of moving in an energy-efficient manner.

THE EFFECT OF AUTOLOGOUS PLATELET-RICH PLASMA (PRP) ON BONE FORMATION AROUND DENTAL IMPLANT IN THE RABBIT: A HISTOMOR-PHOMETRIC AND REMOVAL TORQUE STUDY

  • Yi Yang-Jin;Yang Jae-Ho;Lee Sun-Hyung;Kim Yung-Soo;Kwon Sang-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.6
    • /
    • pp.659-681
    • /
    • 2001
  • Platelet-rich plasma(PRP) has been known to increase the rate and degree of bone formation by virtue of growth factors in concentrated platelets. Although its great healing effect on bone defect or pre-implantation site preparation in conjunction with bone substitute has been reported, the effect associated with implant is unknown. The purpose of this study was to investigate the effect of PRP on rapid osseointegration of endosseous dental implants in the rabbit tibiae. Twenty two adult female New Zealand white rabbits, weighing approximately 2.7-3.3kg, were used for this study. Twelve of the 22 animals were used for histomorphometric analysis and ten of the 22 were for removal torque test. Each animal received two implants in each tibia (two treated with PRP and two as control) and was given fluorochrome intramuscularly. For histomorphometric analysis, rabbits were divided into four groups according to the healing period. At 1 week, 2 weeks, 4 weeks and 8 weeks postoperatively, each three animals were sacrificed serially and the amount and rate of bone formation around dental implant were examined on the undecalcified sections under fluorescent microscope, polarized microscope and light microscope connected to a personal computer equipped with image analysis system. For removal torque test, rabbits were divided into two groups and removal torque tests were performed at 4 weeks, 10 weeks after implant placement. In total, 88 screw shaped, commercially pure titanium implants (Neoplant, Neobiotech, Seoul, Korea) were used in this study. Labeling pattern reflected differences of two groups in bone formation rate at each period. Histomorphometrically, PRP group showed significantly higher bone volume within threads compared to control group at 2 weeks ($70.30{\pm}4.96%$ vs. $50.68{\pm}6.33%$; P < .01) and 4 weeks ($82.59{\pm}5.94%$ vs. $72.94{\pm}4.57%$; P < .05 ). PRP group at 1, 2 and 4 weeks revealed similar degree of bone volume formation comparable to control group at 2, 4 and 8 weeks, respectively. On the other hand, while PRP group showed higher bone-implant contact ($47.37{\pm}8.09%$) than control group ($33.16{\pm}13.47%$) at 2 weeks, there were no significant differences between PRP group and control group for any experimental period. Removal torque values also showed no significant differences between PRP group and control group at any experimental period (P > .05). These findings imply that PRP could induce rapid, more bone formation around implant during early healing period and get faster secondary stability for reducing healing period, though it has not induced bone maturation enough to resist functional loading.

  • PDF