• Title/Summary/Keyword: Torque controller

Search Result 988, Processing Time 0.029 seconds

LMI-based Sliding Mode Speed Tracking Control Design for Surface-mounted Permanent Magnet Synchronous Motors

  • Leu, Viet Quoc;Choi, Han-Ho;Jung, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.513-523
    • /
    • 2012
  • For precisely regulating the speed of a permanent magnet synchronous motor system with unknown load torque disturbance and disturbance inputs, an LMI-based sliding mode control scheme is proposed in this paper. After a brief review of the PMSM mathematical model, the sliding mode control law is designed in terms of linear matrix inequalities (LMIs). By adding an extended observer which estimates the unknown load torque, the proposed speed tracking controller can guarantee a good control performance. The stability of the proposed control system is proven through the reachability condition and an approximate method to implement the chattering reduction is also presented. The proposed control algorithm is implemented by using a digital signal processor (DSP) TMS320F28335. The simulation and experimental results verify that the proposed methodology achieves a more robust performance and a faster dynamic response than the conventional linear PI control method in the presence of PMSM parameter uncertainties and unknown external noises.

Development of engine control based TCS slip control algorithm using engine map (엔진맵에 기초한 엔진제어 TCS 슬립제어 알고리듬의 개발)

  • Song, Jae-Bok;Kim, Byeong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.428-436
    • /
    • 1998
  • A TCS slip control system improves acceleration capability and steerability on slippery roads through engine torgue and/or brake torque control. This research mainly deals with the engine control algorithm via the adjustment of the engine throttle angle. The following new control strategy is proposed and investigated ; the TCS slip controller whose input is the difference between the desired driving wheel speed corresponding to the optimum slip ratio and the actual speed yields the target engine torque and then estimates the throttle angle based on the engine performance curve. Various simulation and hardware-in-the-loop simulation have been carried out. The results show the proposed strategy may compensate for the inherent nonlinearity between variation of the throttle angle and variation of the engine torque and produce better performance than the previous strategies without the engine map, especially in the high speed region.

Design of Drag-type Vertical Axis Miniature Wind Turbine Using Arc Shaped Blade (아크형 날개를 이용한 항력식 수직축 소형 풍력 터빈 설계)

  • Kim, Dong-Keon;Kim, Moon-Kyung;Cha, Duk-Keun;Yoon, Soon-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.7-12
    • /
    • 2006
  • This study is to develop a system of electric power generation utilizing the wind resources available in the domestic wind environment. We tested drag-type vortical wind turbine models, which have two different types of blades: a flat plate and circular arc shape. Through a performance test, conditions of maximum rotational speed were found by measuring the rpm of wind turbine. The rotational speed was measured by a tachometer in a wind tunnel and the tunnel wind speed was by using a pilot-static tube and a micro manometer. The performance test for a prototype was accomplished by calculating power, power coefficient, torque coefficient from the measurement of torque and rpm by a dynamometer controller From the measurements for miniature turbine models with two different blades, the circular arc shape was found to Produce a maximum rotational speed for the same wind velocity condition. Based on this result, the prototype with the circular arc blade was made and tested. We found that it produces 500W at the wind velocity of 10.8 m/s and the power coefficient was 20%.

A Study on the Improvement of Torque Characteristics in PM Synchronous Motor (영구자석형 동기 전동기의 토크 특성 개선에 관한 연구)

  • 류시영;이두수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.231-242
    • /
    • 2001
  • In this paper, we present a method to improve the torque characteristic of PMSM(Permanent Magnet Synchronous Motor) and its hardware realization. It is based on the compensation of sinusoidal current delay caused by phase winding inductances. Since coordinate transformation is not used, simple hard-wired logic in the controller design is adopted and this scheme can eliminates the delay through the coordinate transformation. The delay components are varied according to rotation speeds, but this method can also make it possible to compensate those, dynamically. The control scheme has been verified by experiments on a 4-pole 3-phase PMSM, and the generated torques are increased at whole operation speed ranges.

  • PDF

The Development of the Ignition Spark Timing Conversion System for LPG/Gasoline Bi-fuel Vehicle (LPG 및 Gasoline 겸용 차량의 엔진 점화시기 변환 제어시스템 개발)

  • 전봉준;양인권;김재국;김성준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.117-123
    • /
    • 2003
  • In a bi-fuel engine using gasoline and LPG fuel, with the current ignition timing for gasoline being used, the effective performance could not be taken in LPG fuel supply mode. The ignition timing in LPG fuel mode must be advanced much more than that of gasoline mode for the compensation of its lower flame speed, due to engine torque drop. This study aims to develop the control system for ignition spark timing conversion which is composed of hardwares and control algorithm for gasoline/LPG engine. We propose the control system which can advance the ignition spark timing in LPG fuel mode more than used in gasoline fuel mode. The advance of ignition timing is achieved by change of the ignition dwell time of coil igniter. The engine torque and F/E(Fuel-Economy) in LPG fuel mode are measured to evaluate the difference of engine performance between before and alter changing ignition spark timings. The engine torque and F/E are increased respectively, which proves the developed control system is effective so much for gasoline and LPG bi-fuel engine.

Restoring Torque Control Strategy of IPMSM for the Independently Rotating Wheelsets in Wireless Trams

  • Oh, Ye Jun;Cho, Yonho;Kim, In-Gun;Lee, Ju;Lee, Hyungwoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1683-1689
    • /
    • 2017
  • Wheelsets are an important component affecting the dynamic characteristics of railway vehicles. Research on wheelsets has been conducted for a long time. It is possible to generate the restoring force by the individual torque control of the left and right wheels in the independently rotating wheelsets (IRWs). Although this method solves the problems of conventional wheelsets, such as the solid axle wheelsets, the restoring force control must be added to the existing traction force control, and the restoring force requires a higher precision and quicker response than the traction force. In this paper, we study the robust control strategy of wireless trams with independently rotating wheelsets. The interior permanent magnet synchronous motor (IPMSM) and the controller with the actual scale wireless tram are designed to verify the torque control performance. Moreover, we propose an open loop control method to test and verify the traction and restoring force control algorithm of the IRWs.

LINBAR DECOUPLING CONTROL OF ROTOR SPEED AND ROTOR FLUX IN INDUCTION MOTOR FOR HIGH DYNAMIC PERFORMANCE AND MAXIMAL POWER BFFICLENCY (동적 고성능과 최대 전력 효율을 위한 유도 전동기 회전자 속도와 회전자 자속의 선형 비간섭 제어)

  • Kim, Dong-Il;Ha, In-Joong;Ko, Myoung-Sam;Park, Jae-Wha
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.48-53
    • /
    • 1989
  • We attempt to achieve both high dynamic performance and maximal power efficiency by means of linear decoupling of rotor speed (or motor torque) and rotor flux. The induction motor with our controller possesses the input-output dynamic characteristics of a linear system such that the rotor speed (or motor torque) and the rotor flux are decoupled. The rotor speed (or motor torque) responses are not affected by abrupt changes in the rotor flux and vice versa. The rotor flux need not be measured but is estimated by the well-known flux simulator. The effect of large variation in the rotor resistance on the control performances is minimized by employing a parameter adaptation method. To illuminate the significance of our work. we present simulation and experimental results as well as mathematical performance analyses.

  • PDF

Design of Force Estimator Based on Disturbance Observer (외란 관측기에 기반을 둔 힘 추정기 설계)

  • 엄광식;서일홍
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1140-1146
    • /
    • 1999
  • In this paper, a force estimation method is proposed for force control without force sensor. For this , a disturbance observer is applied to each joint of an {{{{ { n}_{ } }}}} degrees of freedom manipulator to obtain a simple equivalent robot dynamics(SERD) being represented as an n independent double integrator system. To estimate the output of disturbance observer due to internal torque, the disturbance observer output estimator(DOOE) is designed, where uncertain parameters of the robot manipulator are adjusted by the gradient method to minimize the performance index which is defined as the quadratic form of the error signal between the output of disturbance observer and that of DOOE. when the external force is exerted, the external force is estimated by the difference between the output of disturbance observer and DOOE, since output of disturbance observer includes the external torque signal as well as the internal torque estimated by the output of DOOE. And then, a force controller is designed for force feedback control employing the estimated force signal. To verify the effectiveness of the proposed force estimation method, several numerical examples and experimental results are illustrated for the 2-axis direct drive robot manipulator.

  • PDF

Robust Control of an Anti-Lock Eddy Current Type Brake System (잠김 방지 기능을 가지는 비접촉식 와전류형 제동장치의 견실제어)

  • 이갑진;박기환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.525-533
    • /
    • 1998
  • A conventional contact type brake system which uses a hydraulic system has mny Problems such as time delay response due to pressure build-up, brake pad wear due to contact movement, bulky size, and low braking performance in high speed region. As vehicle speed increases, a more powerful brake system is required to ensure vehicle safety and reliability. In this work, a contactless brake system of an eddy current type is proposed to overcome problems. Optimal torque control which minimizes a braking distance is investigated with a scaled-down model of an eddy current type brake. It is possible to realize optimal torque control when a maximum friction coefficient (or desired slip ratio) corresponding to road condition is maintained. Braking force analysis for a scaled-down model is done theoretically and experimentally compensated. To accomplish optimal torque control of an eddy current type brake system, a sliding mode control technique which is, one of the robust nonlinear control technique is developed. Robustness of the sliding mode controller is verified by investigating the braking performance when friction coefficient is varied. Simulation and experimental results will be presented to show that it has superior performance compared to the conventional method.

  • PDF

A Study on the Development of High-Speed Control Algorithm for the trapezoidal Brushless DC Motor (구형파 브러시리스 직류 전동기의 고속 운전 제어 알고리즘 개발에 관한 연구)

  • Choi Jae-Hyuk;Jang Hoon;Kim Jong-Sun;Yoo Ji-Yoon;Song Myung-Hyun;Lee Young-Sun
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.435-438
    • /
    • 2002
  • The Objects of this paper are developing and also improving a high-speed driving system of bushless DC motor(BLDCM) with economical and practical performance. Because BLDC motors are manufactured that each motor can create proper torque for their individual purpose, it is difficult to increase over the rated speed when a motor speed (with it's rated road) is reaching to a maximum speed so the motor torque cannot be increased. This paper verifies the effects of Leading Angle Algorithm, that is proposed on this paper, with examining existing methods to maximize the torque of a motor in high-speed driving area. The arithmetic processor for this experiment is TMS320C240 DSP controller that is designed for a special purpose of motor control in Texis Instrument Inc., and the used Inverter is PM10CSJ060, a Intelligent Power Module of Mitsubishi Corporation.

  • PDF