• Title/Summary/Keyword: Torque coefficient

Search Result 266, Processing Time 0.03 seconds

Development and performance evaluation of lateral control simulation-based multi-body dynamics model for autonomous agricultural tractor

  • Mo A Son;Hyeon Ho Jeon;Seung Yun Baek;Seung Min Baek;Wan Soo Kim;Yeon Soo Kim;Dae Yun Shin;Ryu Gap Lim;Yong Joo Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.773-784
    • /
    • 2023
  • In this study, we developed a dynamic model and steering controller model for an autonomous tractor and evaluated their performance. The traction force was measured using a 6-component load cell, and the rotational speed of the wheels was monitored using proximity sensors installed on the axles. Torque sensors were employed to measure the axle torque. The PI (proportional integral) controller's coefficients were determined using the trial-error method. The coefficient of the P varied in the range of 0.1 - 0.5 and the I coefficient was determined in 3 increments of 0.01, 0.05, and 0.1. To validate the simulation model, we conducted RMS (root mean square) comparisons between the measured data of axle torque and the simulation results. The performance of the steering controller model was evaluated by analyzing the damping ratio calculated with the first and second overshoots. The average front and rear axle torque ranged from 3.29 - 3.44 and 6.98 - 7.41 kNm, respectively. The average rotational speed of the wheel ranged from 29.21 - 30.55 rpm at the front, and from 21.46 - 21.63 rpm at the rear. The steering controller model exhibited the most stable control performance when the coefficients of P and I were set at 0.5 and 0.01, respectively. The RMS analysis of the axle torque results indicated that the left and right wheel errors were approximately 1.52% and 2.61% (at front) and 7.45% and 7.28% (at rear), respectively.

An Improved Torque Feed-forward Control with Observer-based Inertia Identification in PMSM Drives

  • Zhao, Shouhua;Chen, Yangcheng;Cui, Lin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.69-76
    • /
    • 2013
  • This paper is concerned with speed tracking control problem for permanent-magnet synchronous drives (PMSM) in the presence of an variable load torque and unknown model parameters. The disturbance of speed control caused by inaccuracy of model parameters has been investigated. A load torque observer has been proposed to observe the load torque and estimate the disturbance caused by inaccuracy of model parameters. Both inertia and friction coefficient are identified in gradient descent approach. The stability condition of the observer has also been studied. Furthermore an improved feed-forward control has been introduced to reduce the speed track error. The proposed control strategy has been verified by both simulation and experimental results.

Development of High Precision Forward Slip Model By Using Roll Torque in Hot Strip Finishing Mill (압연롤 토크를 이용한 열연박판 마무리압연 선진율 예측 정밀도 개선연구)

  • 문영훈;김영환
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.583-590
    • /
    • 1999
  • New forward slip model has been developed for the precise prediction of rolling speed in the hot strip finishing mill. Besides those influential factors such as neutral point, work roll diameter, friction coefficient, bite angle and the thickness at each side of entry and delivery of the rolls, roll torque was specifically taken into account in this study. To consider the effect of width change on forward slip, calibration factors obtained from rolling torque has been added to new prediction model and refining method has also been developed to reduce the speed unbalance between adjacent stands. The application of the new model showed a good agreement in rolling speeds between the predictions and the actual measurements, and the standard deviation of prediction error has also been significantly reduced.

  • PDF

Design of a Speed Controller for the Separately Excited DC Motor in Application on Pure Electric Vehicles (순전기자동차용 타여자직류기의 속도제어기 설계)

  • Hyun, Keun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.6-12
    • /
    • 2007
  • In this paper, an robust adaptive backstepping controller is proposed for the speed control of separately excited DC motor in pure electric vehicles. A general electric drive train of PEV is conceptually rearrange to major subsystems as electric propulsion, energy source, and auxiliary subsystem and the load torque is modeled by considering the aerodynamic, rolling resistance and grading resistance. Armature and field resistance, damping coefficient and load torque are considered as uncertainties and noise generated at applying load torque to motor is also considered. It shows that the backstepping algorithm can be used to solve the problems of nonlinear system very well and robust controller can be designed without the variation of adaptive law. Simulation results are provided to demonstrate the effectiveness of the proposed controller.

Wind loads on a solar array

  • Kopp, G.A.;Surry, D.;Chen, K.
    • Wind and Structures
    • /
    • v.5 no.5
    • /
    • pp.393-406
    • /
    • 2002
  • Aerodynamic pressures and forces were measured on a model of a solar panel containing six slender, parallel modules. Of particular importance to system design is the aerodynamically induced torque. The peak system torque was generally observed to occur at approach wind angles near the diagonals of the panel ($45^{\circ}$, $135^{\circ}$, $225^{\circ}$ and $315^{\circ}$) although large loads also occurred at $270^{\circ}$, where wind is in the plane of the panel, perpendicular to the individual modules. In this case, there was strong vortex shedding from the in-line modules, due to the observation that the module spacing was near the critical value for wake buffeting. The largest loads, however, occurred at a wind angle where there was limited vortex shedding ($330^{\circ}$). In this case, the bulk of the fluctuating torque came from turbulent velocity fluctuations, which acted in a quasi-steady sense, in the oncoming flow. A simple, quasi-steady, model for determining the peak system torque coefficient was developed.

A Study of Corrosion Resistance and Torque in Bolt Coated with Magni 565 (Magni 565 코팅 볼트의 내식성 및 토오크 특성에 대한 연구)

  • Kim, Sang-Soo;Kim, Moo-Gil;Jung, Byong-Ho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.4
    • /
    • pp.195-202
    • /
    • 2007
  • Corrosion resistance and torque of M10 bolt coated with Magni 565 were investigated. Corrosion protection mechanism were also studied with the microstructure of coating film. The bolts with the optimum conditions showed around $10{\mu}m$ layer thickness, a great corrosion resistance in salt spray test and a proper torque in torque/tension test. But torque coefficient k increased with the number of bolting and clamping force of M10 bolt showed significantly lower than that of specified value 28.3kN. It was thought that the repeated bolting made the coating film peel off and powdery. The sample coated with optimum coating conditions showed more higher polarization resistance and corrosion potential than the specimens of top and base coat only. The base coating film was composed of lamellar zinc flakes, which provides a large sacrificial cathodic protection. Meanwhile, the top coating film was composed of organic aluminium pigments layer, which provides barrier protection to the corrosion circumstances.

Modeling of High-speed Tapping Touque Considering Friction Force (마찰력을 고려한 고속탭핑 토크 모델링)

  • Lee, Don-Jin;Gang, Ji-Ung;Jeon, Hyeon-Bae;Kim, Seon-Ho;An, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.67-73
    • /
    • 2001
  • This paper aims at developing a torque model for the high-speed tapping with small-diameter taps. As recent industries such as automobile and information technology grows, taps smaller than 5mm in diameter are needed much more. In that occasion, the friction force between a tap surface and a workpiece plays much more important role in the tapping torque than in he larger tapping. Tapping mechanism was analysed based on the tap geometry. It has two steps : one is a forward cutting composed of the chamfered threading and full threading and the other is the backward cutting. The torque by the cutting force in the chamfered threading is calculated using the cutting area and the specific cutting force while the torque by the friction force, which is rather dominant than the cutting force both in the full threading and in the backward cutting, is calculated using the normal force on the threads and the friction coefficient. The experiment has shown that the results by the proposed torque model fit quite well with the acutal measurements within the error of 10%.

  • PDF

Robust Adaptive Fault-Tolerant Control for Robot Manipulators with Performance Degradation Due to Actuator Failures and Uncertainties (구동기 고장과 불확실성으로 인한 성능 저하를 가지는 로봇 매니퓰레이터에 대한 강인한 적응 내고장 제어)

  • 신진호;백운보
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.3
    • /
    • pp.173-181
    • /
    • 2004
  • In normal robot control systems without any actuator failures, it is assumed that actuator torque coefficients applied at each joint have normally 1's all the time. However, it is more practical that actuator torque coefficients applied at each joint are nonlinear time-varying. In other words, it has to be considered that actuators equipped at joints may fail due to hardware or software faults. In this work, actuator torque coefficients are assumed to have non-zero values at all joints. In the case of an actuator torque coefficient which has a zero value at a joint, it means the complete loss of torque on the joint. This paper doesn't deal with the case. As factors of performance degradation of robots, both actuator failures and uncertainties are considered in this paper at the same time. This paper proposes a robust adaptive fault-tolerant control scheme to maintain the required performance and achieve task completion for robot manipulators with performance degradation due to actuator failures and uncertainties. Simulation results are shown to verify the fault tolerance and robustness of the Proposed control scheme.

THERMAL FRICTION TORQUE CHARACTERISTICS OF STAINLESS BALL BEARINGS

  • Lee, Jae-Seon;Kim, Ji-Ho;Kim, Jong-In
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.289-290
    • /
    • 2002
  • Stainless steel ball bearings are used in the control element drive mechanism and driving mechanisms such as step motor and gear boxes for the integral nuclear reactor, SMART. The bearings operate in pressurized pure water (primary coolant) at high temperature and should be lubricated with only this water because it is impossible to supply greases or any additional lubricant since the whole nuclear rector system should be perfectly sealed and the coolant cannot contain ingredients for bearing lubrication. Temperature of water changes from room temperature to about 120 degree Celsius and pressure rises up to 15MPa in the nuclear reactor. It can be anticipated that the frictional characteristics of the ball bearings changes according to the operating conditions, however little data are available in the literature. It is found that friction coefficient of 440C stainless steel itself does not change sharply according to temperature variation from the former research, and the friction coefficient is about 0.45 at low speed range. In this research frictional characteristics of the assembled ball bearings are investigated. A special tribometer is used to simulate the axial loading and the bearing operating conditions, temperature and pressure in the driving mechanism in the nuclear reactor. Highly purified water is used as lubricant ‘ and the water is heated up to 120 degree Celsius and pressurized to 15MPa. Friction force is monitored by the torque transducer.

  • PDF

A Study on Power Performance of a 1kW Class Vane Tidal Turbine

  • Yang, Changjo;Nguyen, Manh Hung;Hoang, Anh Dung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.143-151
    • /
    • 2015
  • Recently, tidal current energy conversion is a promising way to harness the power of tides in order to meet the growing demands of energy utilization. A new concept of tidal current energy conversion device, named Vane Tidal Turbine (VTT), is introduced in this study. VTT has several special features that are potentially more advantageous than the conventional tidal turbines, such as propeller type tidal turbines. The purpose of this study on VTT is to analyze the possibility of extracting the hydrokinetic energy of tidal current and converting it into electricity, and evaluate the performance of turbines for various numbers of blades (six, eight and twelve) using Computational Fluid Dynamics (CFD). At various tip-speed ratios (TSR), the six-bladed turbine obtains the highest power and torque coefficients, power efficiency is up to 28% at TSR = 1.89. Otherwise, the twelve blade design captures the smallest portion of available tidal current energy at all TSRs. However, by adding more blades, torque extracted from the rotor shaft of twelve-bladed turbine is more uniform due to the less interrupted generation of force for a period of time (one revolution).