• 제목/요약/키워드: Torque angle Control

검색결과 310건 처리시간 0.026초

회전자 자속 이탈각 추정을 이용한 유도전동기의 회전자 시상수 보상 (Rotor Time Constant Compensation of Induction Motor by Estimating Deviation Angle)

  • 차영길;정종진;김흥근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.264-267
    • /
    • 1995
  • In indirect vector control, if the value or the rotor tine constant used in slip calculation is different from the actual rotor time constant because of the temperature rising and flux saturation level, model flux angle and actual flux angle is different so that the transient and steady state response is degraded. In this paper, flux deviation angle is calculated by using actual torque and reference torque, and this flux deviation angle is summed to slip angle, therefore rotor flux angle is always accurate and indirect vector control is satisfied.

  • PDF

초적 Lead Angle 제어에 의한 폐루프 스테핑 전동기의 운전영역 확대 (Operating Range Expansion of a Closed-Loop Stepping Motor by Optimal Lead Angle Control)

  • 우광준;이종언;이현창
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제9권3호
    • /
    • pp.80-87
    • /
    • 1995
  • 영구자석형 스테핑 전동기의 언덕턴스를 고려하여 최대 평균 토오크식을 제시하였으며, 제시된 토오크식에 근거하여 마이크로컨트롤러에 의해 lead angle을 전동기의 속도에 따라 최적으로 제어함으로서 최대 토오크를 발생시키는 제어시스템을 설계하여 전동기의 토오크/속도 특성 실험을 하였다. 이론식에 의하면 토오크/속도 곡선에서 최적 lead angle의 도입에 따라 발생하는 토오크가 증대되며, 운전영역이 2배이상 확대되는 바와 같이, 특성실험 결과에서도 최적 lead angle의 실현에 따라 구동모드에 관계없이 발생 토오크가 증대되며, 운전영역이 2배이상 학대됨을 확인 할 수 있다.

  • PDF

다상 BLDC 모터 드라이브 시스템의 개방 고장 시 효율 향상이 고려된 토크 리플 저감 대책 (Torque Ripple Reduction Method With Enhanced Efficiency of Multi-phase BLDC Motor Drive Systems Under Open Fault Conditions)

  • 김태윤;서용석;박현철
    • 전력전자학회논문지
    • /
    • 제27권1호
    • /
    • pp.33-39
    • /
    • 2022
  • A multi-phase brushless direct current (BLDC) motor is widely used in large-capacity electric propulsion systems such as submarines and electric ships. In particular, in the field of military submarines, the polyphaser motor must suppress torque ripple in various failure situations to reduce noise and ensure stable operation for a long time. In this paper, we propose a polyphaser current control method that can improve efficiency and reduce torque ripple by minimizing the increase in stator winding loss at maximum output torque by controlling the phase angle and amplitude of the steady-state current during open circuit failure of the stator winding. The proposed control method controls the magnitude and phase angle of the healthy phase current, excluding the faulty phase, to compensate for the torque ripple that occurs in the case of a phase open failure of the motor. The magnitude and phase angle of the controlled steady-state current are calculated for each phase so that copper loss increase is minimized. The proposed control method was verified using hardware-in-the-loop simulation (HILS) of a 12-phase BLDC motor. HILS verification confirmed that the increase in the loss of the stator winding and the magnitude of the torque ripple decreased compared with the open phase fault of the motor.

토크 공유 함수법을 이용한 새로운 방식의 스위치드 리럭턴스 모터의 토크 제어 (A new torque sharing function method for torque control of a switched reluctance motor)

  • 최창환;이대옥;박기환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.262-262
    • /
    • 2000
  • This paper presents a new torque sharing function method that extends the definition region of the conventional TSF to both the positive and negative torque production regions. By using this definition, all kinds of the control inputs that consider switching on/off angle control as well as the current profiling can be described. A parametrized representation of the current profiles is proposed by using a series of B-spline functions, which reduces memory requirement and enables additional controllers. Optimal determination of the TSFs are also investigated for various control objectives. Moreover, the comparison study of each objective is presented. Since this method generalizes all of the possible control input, the current and torque profiles obtained from the optimization are the most suitable control input that satisfy the objectives.

  • PDF

Torque Maximization Control of 3-Phase BLDC Motors in the High Speed Region

  • Im, Won-Sang;Kim, Jong-Pil;Kim, Jang-Mok;Baek, Kwang-Ryul
    • Journal of Power Electronics
    • /
    • 제10권6호
    • /
    • pp.717-723
    • /
    • 2010
  • This paper proposes a new torque control algorithm for BLDC motors to get the maximum torque in the high speed region. The delay of the phase currents is severe due to the stator reactance. The torque fluctuations of BLDC motors increase and the average torque is decreases due to a slow rise in the phase current when compared to the back EMF. In this paper, the phase current of BLDC motors under the high speed condition is analyzed and a torque maximization control is developed on the basis of using numerical analysis. Computer simulations and experimental results show the usefulness of the proposed control algorithm.

전동식 조향 장치의 성능 평가를 위한 신경 근육계 기반 운전자 모델 개발 (Development of Human Driver Model based on Neuromuscular System for Evaluation of Electric Power Steering System)

  • 이성현;이동필;이재풍;채흥석;이명수;이경수
    • 자동차안전학회지
    • /
    • 제9권3호
    • /
    • pp.19-23
    • /
    • 2017
  • This paper presents a lateral driver model with neuromuscular system to evaluate the performance of electric power steering (EPS). Output of most previously developed driver models is steering angle. However, in order to evaluate EPS system, driver model which results in steering torque output is needed. The proposed lateral driver model mainly consists of 2 parts: desired steering angle calculation and conversion of steering angle into steering torque. Desired steering angle calculation part results in steering angle to track desired yaw rate for path tracking. Conversion of steering angle into torque is consideration with neuromuscular system. The proposed driver model is investigated via actual driving data. Compared to other algorithms, the proposed algorithm shows similar pattern of steering angle with human driver. The proposed driver can be utilized to efficiently evaluate EPS system in simulation level.

SRCI 구동 유도전동기 시스템의 Angle Control (Angle Control for SRCI Fed Induction Motor Drive)

  • 김인동;조규형
    • 대한전기학회논문지
    • /
    • 제37권12호
    • /
    • pp.854-861
    • /
    • 1988
  • The current source inverter-fed induction motor(CSIM) drive is widely used in industry because of its four quadrant operation, fuseless protection, fuseless protection, and ruggedness. the CSIM drive system, however, has shortcomins such as slow response and dynamic stability to load torque disturbance and reference speed change. Such a disadvantages can be compensated considerably by means of introducing additional angle angle control loop. The angle control method is dependent upon the inverter type. In this paper, simultaneus recovery and commutation inverter(SRCI) which is developed recently is considered.

  • PDF

동기형 릴럭턴스 전동기 MTPA 제어시 자기포화 및 철손의 영향 (Magnetic Saturation and Iron Loss Influence on Max Torque per Ampere Current Vector Variation of Synchronous Reluctance Machine)

  • 유회총;홍현석;함상환;이주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.667-668
    • /
    • 2015
  • Synchronous Reluctance Motor (SynRM) has a simple structure with high efficient and without rotor conductor loss. Therefore, it is better than induction motor for electric vehicle (EV) on aspect of efficiency. SynRM usually operates on the constant torque region using maximum torque per ampere (MTPA)control which is adopted due to rotor structure limitation. Thus, the accurate current angle is crucial for motor control. However, finite element analysis (FEA) program is not sufficient exactly to regard how the iron loss and magnetic saturation influences on the current angle. Consequently, this paper proposed a method to calculate the current angle with consideration of iron loss.

  • PDF

트로틀 앵글 제어에 의한 내연기관의 토오크 및 속도의 비선형 제어 (Nonlinear Control of Torque and Speed of S.I.Engines Using Electric Throttle Control)

  • 원문철;강병배;박문수;김태영
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.72-81
    • /
    • 1999
  • A nonlinear engine torque and speed control algorithm using throttle angle control is developed with an engine load torque estimation algorithm. Three 3-dimensional nonlinear engine maps as a part of the nonlinear control algorithm are obtained from steady state engine dynamometer tests. An electric throttle actuator is developed using a stepper motor and a 8 bit micro-processor. The speed control and external load estimation algorithm are tested via engine speed control experiments, and show performance good enough for using various engine torque and speed control applications.

  • PDF

C-EPS (C-type Electric Power Steering) 시뮬레이터 설계 및 제어 알고리즘 개발 (Design of C-EPS (Column type - Electric Power Steering) Simulator and Development of Control Algorithm)

  • 박명욱;문희창;김정하
    • 제어로봇시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.566-571
    • /
    • 2010
  • EPS (Electric Power Steering) is important device for improving vehicle's dynamics and static performances. This paper deals with simulator design for C-EPS (Colum type-EPS), development assist and returnability control algorithm. First, C-EPS system model was simply designed because EPS system is complex control system that has many unknown variables. These parameters were simplified through assumptions. Second, C-EPS simulator was designed for development of control algorithm. This simulator has SAS (Steering Angle Sensor), dual torque sensor, dual load cell for measuring rack force, dual linear actuator for generating tire force and Data Acquisition System. Using this simulator, control methods ware tested. Third, control algorithm was designed for torque assist and returnability. Assist torque map and returnability torque map were found by lots of simulation test. These torque maps were tuned for EPS actuator control. The simulation result was compared with non-EPS system result. In this research, the C-EPS simulator was designed for development of control algorithm about torque assistant and returnability. Using this simulator, control algorithm was improved.