• 제목/요약/키워드: Torque angle

검색결과 756건 처리시간 0.021초

Development of SRM Drive System for Built-in Car Vacuum Cleaners (차량용 Built-in 청소기용 SRM 드라이브 시스템 개발)

  • Lee, Young-Soo;Noh, Jeongmin;Lee, Daejin;Kim, Jaehyuck;Seon, Han-Geol;Han, Man-Seung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제22권3호
    • /
    • pp.193-198
    • /
    • 2017
  • This paper discusses the design and control of a switched reluctance motor (SRM) drive system for a built-in car vacuum cleaner. The growing popularity of outdoor activities and recreation has led the automobile industry to expand technologies that increase the convenience of vehicles, and thus, a built-in car vacuum cleaner was introduced. However, the existing DC motor of a vacuum cleaning system has several disadvantages, such as maintenance cost and lifespan issues of its commutator-brush structure. An SRM can be a good alternative to the existing DC motor because of its high-speed capability, long lifespan, low maintenance cost, and high efficiency, among other advantages. A prototype SRM drive is designed and manufactured to verify its feasibility for use in a built-in car vacuum cleaning system. Dynamic simulation is conducted to determine the optimal switching angle for maximum efficiency and minimum torque ripple. Load test, noise measurement, and suction-power tests are also carried out.

Modeling and Speed Control of a Horizontal Axis Wind Generator (수평축 풍력발전기의 모델링 및 속도제어)

  • Lim, J.H.;Boo, S.H.;Huh, J.C.;Kim, K.H.
    • Solar Energy
    • /
    • 제20권1호
    • /
    • pp.1-9
    • /
    • 2000
  • Wind turbine system converts wind energy into electric energy. Since the velocity of wind is random in nature, control of the angular velocity of the blade is necessary in order to generate high quality electric power. The control of a blade can be divided into a stall regulation and a pitch control types. The stall regulation type which is based on the characteristics of an aerodynamic stall of the blades is simple and cheap, but it suffers from fluctuation of the resulting power. Or the contrary, pitch control type is based on the fact that the torque of the blade can be changed by varying the pitch angle of the blade. It is mechanically and mathematically complicated, but the control performance is better than that of the stall regulation type. This paper suggests a method of denying a mathematical modeling of the wind turbine system, and develops a speed control algorithm by pitch control. The validity of the algorithm is demonstrated with the results produced through sets of simulation.

  • PDF

Magnetic Actuator for a Capsule Endoscope Navigation System

  • Chiba, Atsushi;Sendoh, Masahiko;Ishiyama, Kazushi;Arai, Ken Ichi;Kawano, Hironao;Uchiyama, Akio;Takizawa, Hironobu
    • Journal of Magnetics
    • /
    • 제12권2호
    • /
    • pp.89-92
    • /
    • 2007
  • The authors propose a magnetic actuator for use as a navigation system for capsule endoscopes. The actuator is composed of a capsule dummy, a permanent magnet inside the capsule, and an external spiral structure. The device rotates and propels wirelessly when exposed to an external rotational magnetic field. In this study we measured the effect of the spiral shape on the velocity and thrust force properties. According to our experimental results, the actuator obtained a maximum velocity and thrust force when the spiral angle was set at 45 degrees, the number of spirals was set at 4, and the spiral-height was set at 1-mmf. We also conducted a motion test in the large intestine of a pig placed on a 30 degrees slope. The actuator passed through a 700 mm length of the intestine in about 300 s. The device also managed to travel up and down the 30 degrees slope with no difficulty whatsoever. Our results demonstrate the great potential of this actuator for use as a navigation system for capsule endoscopes.

A Study of Hydraulic Turbine Design for The Discharge Water Energy Harvesting (방출 수 에너지 하베스팅을 위한 수차 설계에 관한 연구)

  • Cheong, Han Seok;Kim, Chung Hyeok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제34권1호
    • /
    • pp.78-83
    • /
    • 2021
  • We modeled the helical turbine and three modified helical turbines for the structure of the hydraulic turbine for discharge water energy harvesting. A structure that can reduce the load applied to the blade by placing a center plate is our basic concept. The shape was reduced to 1/5, fixed to a size of 240 mm in height and 247 mm in diameter, and modeled by changing the width and the angle of the hydraulic turbine blade. The pipe inner diameter of the simulation pipeline equipment is 309.5 mm, and the simulation section was 4 m in the entire section. The flow velocity was measured for two cases, 1.82 m/s and 2.51 m/s, with the parameters being the amount of power generation, hydraulic turbine's torque, and hydraulic turbine's rotation speed. The measurement results confirmed that the flow velocity at the center, which has no pipe surface resistance, has a great influence on the amount of power generation; therefore, the friction area of the turbine blade should be increased in the center area. In addition, if the center plate is placed on the helical turbine, durability can be improved as it reduces the stress on the blade.

Experimental determination of the resistance of a single-axis solar tracker to torsional galloping

  • Martinez-Garcia, Eva;Marigorta, Eduardo Blanco;Gayo, Jorge Parrondo;Navarro-Manso, Antonio
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.519-528
    • /
    • 2021
  • One of the most efficient designs of solar trackers for photovoltaic panels is the single-axis tracker, which holds the panels along a torque tube that is driven by a motor at the central section. These trackers have evolved to become extremely slender structures due to mechanical optimization against static load and the need of cost reduction in a very competitive market. Owing to the corresponding decrease in mechanical resistance, some of these trackers have suffered aeroelastic instability even at moderate wind speeds, leading to catastrophic failures. In the present work, an analytical and experimental approach has been developed to study that phenomenon. The analytical study has led to identify the dimensionless parameters that govern the motion of the panel-tracker structure. Also, systematic wind tunnel experiments have been carried out on a 3D aeroelastic scale model. The tests have been successful in reproducing the aeroelastic phenomena arising in real-scale cases and have allowed the identification and a close characterization of the phenomenon. The main results have been the determination of the critical velocity for torsional galloping as a function of tilt angle and a calculation methodology for the optimal sizing of solar tracker shafts.

Effects of Kinematics and Kinetics of the Lower Extremities Joint during Drop Landing in Adult Women with Patellofemoral Pain Syndrome (슬개대퇴동통증후가 성인 여성의 드롭랜딩 시 하지 주요관절의 운동역학적 변화에 미치는 영향)

  • Jeon, Kyoungkyu;Yeom, Seunghyeok
    • Korean Journal of Applied Biomechanics
    • /
    • 제31권1호
    • /
    • pp.64-71
    • /
    • 2021
  • Objective: This study investigated the different in isokinetic peak strength of the knee joint, and kinetics and kinematics in drop landing pattern of lower limb between the patellofemoral pain syndrome (PFPS) patients and normal. Method: 30 adult females were divided into the PFPS (age: 23.13±2.77 yrs; height: 160.97±3.79 cm, weight: 51.19±4.86 kg) and normal group (age: 22.80±2.54 yrs, height: 164.40±5.77 cm, weight: 56.14±8.16 kg), with 15 subjects in each group. To examine the knee isokinetic peak strength, kinematics and kinetics in peak vertical ground reaction force during drop landing. Results: The knee peak torque (Nm) and relative strength (%) were significantly weaker PFPS group than normal group. In addition, PFPS group had significantly greater hip flexion angle (°) than normal group. Moreover, normal group had significantly greater moment of hip abduction, hip internal rotation, and left ankle eversion than PFPS group, and PFPS group had significantly greater moment of knee internal rotation. Finally, there was significant differences between the groups at anteroposterior center of pressure. Conclusion: The PFPS patients had weakened knee strength, and which can result in an unstable landing pattern and cause of more stress in the knee joints despite to effort of reduce vertical ground reaction force.

A Study on the Structural Stability of the Swash Plate Piston Pump for Marine Hydraulic Power Supply (선박 유압공급 장치용 사판식 유압 피스톤 펌프의 구조적 안정성에 관한 연구)

  • Gwak, Beom-Seop;Lim, Jong-Hak;Lee, In-Wook;Yi, Chung-Seob;Lee, Ho Seong;Song, Chul Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제20권4호
    • /
    • pp.24-30
    • /
    • 2021
  • In this paper, a structural stability analysis of the swash plate hydraulic piston pump installed on hydraulic supply systems in marine vessels is presented. In order to verify the integrity of the pump design, a standard structural analysis technique based on the finite element method has been applied for various operating and boundary conditions. For the maximum operational torque (223 N·m) at 5°, 10°, and 15° of the swash plate angle, the maximum deformation, equivalent stress and safety factor are evaluated. The analytical results show that under current operating conditions, the structural reliability of the design has been confirmed.

Nonlinear Analysis of Adhesive Tubular Joints with Composite Adherends subject to Torsion (비틀림 하중을 받는 복합재료 튜브형 접합부의 비선형 해석)

  • Oh Je-Hoon
    • Composites Research
    • /
    • 제19권3호
    • /
    • pp.29-36
    • /
    • 2006
  • Since composite materials have anisotropic properties that depend on their stacking angle and sequence, the analysis of joints with isotropic adherends is limited in describing the behavior of the adhesive Joint with composite adherends. In this study, the nonlinear solution for adhesive joints with composite adherends was derived by incorporating the nonlinear behavior of the adhesive into the analysis. The behavior of the laminated composite tube was first analyzed, and the stress distributions of the composite tubular adhesive joint were calculated by including the nonlinear properties of the adhesive. The effect of the stacking sequence of composite adherends and bonding length on torque capacities of joints was examined, and results of the nonlinear analysis were also compared with those of the linear analysis.

The Origin of the Spin-Orbit Alignment of Galaxy Pairs

  • Moon, Jun-Sung;An, Sung-Ho;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제46권1호
    • /
    • pp.28.3-29
    • /
    • 2021
  • Galaxies are not just randomly distributed in space; instead, a variety of galaxy alignments have been found over a wide range of scales. Such alignments are the outcome of the combined effect of interacting neighbors and the surrounding large-scale structure. Here, we focus on the spin-orbit alignment (SOA) of galaxy pairs, the dynamical coherence between the spin of a target galaxy and the orbital angular momentum of its neighbor. Based on a recent cosmological hydrodynamic simulation, the IllustrisTNG project, we identify paired galaxies with mass ratios from 1/10 to 10 at z = 0 and statistically analyze their spin-orbit angle distribution. We find a clear preference for prograde orientations (i.e., SOA), which is more prominent for closer pairs. The SOA is stronger for less massive targets in lower-density regions. The SOA witnessed at z = 0 has been developed progressively since z = 2. There is a clear positive correlation between the alignment strength and the interaction duration with its current neighbor. Our results suggest the scenario in which the SOA is developed mainly by interactions with a neighbor for an extended period of time, rather than by the primordial torque exerted by the large-scale structure.

  • PDF

The Design and Evaluation of The Stem-cutting Device of Harvesting Gripper Using Twisted String Actuation System (줄 꼬임 구동을 이용한 수확용 그리퍼의 줄기 절단 장치 설계 및 검증)

  • Seong-Mo Choi;Dongwoo Lee;Myun Joong Hwang
    • The Journal of Korea Robotics Society
    • /
    • 제19권3호
    • /
    • pp.244-253
    • /
    • 2024
  • This paper presents a novel stem-cutting device using a twisted string actuation system combined with the cinch bag-typed gripper proposed in previous research. The suggested cutting device was developed to cut the stem of a tomato using two motors. The relationship between contact time and motor angle was mathematically induced, and the contacting time was verified through the experiments. The contact time has decreased as the offset of each pair of strings at the disk increases. The contact time and its deviation were reduced by increasing the radius of the twisted string bundle, and the motor torque to exert an equivalent cutting force was surged at the same time. The proposed cutting mechanism with 16 strands of twisted string bundle and 40 mm of offset can cut the given tomato stems and stalks, exerting up to 132.4 N of cutting force in 4.6 to 6.5seconds.