• Title/Summary/Keyword: Torque Sensor

Search Result 423, Processing Time 0.028 seconds

Vision and force/torque sensor fusion in peg-in-hole using fuzzy logic (삽입 작업에서 퍼지추론에 의한 비젼 및 힘/토오크 센서의 퓨젼)

  • 이승호;이범희;고명삼;김대원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.780-785
    • /
    • 1992
  • We present a multi-sensor fusion method in positioning control of a robot by using fuzzy logic. In general, the vision sensor is used in the gross motion control and the force/torque sensor is used in the fine motion control. We construct a fuzzy logic controller to combine the vision sensor data and the force/torque sensor data. Also, we apply the fuzzy logic controller to the peg-in-hole process. Simulation results uphold the theoretical results.

  • PDF

Performance Improvement of a 6-Axis Force-torque Sensor via Novel Electronics and Cross-shaped Double-hole Structure

  • Kang Chul-Goo
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.469-476
    • /
    • 2005
  • Performance of a force-torque sensor is affected significantly by an error signal that is included in the sensor signal. The error sources may be classified mainly into two categories: one is a structural error due to inaccuracy of sensor body, and the other is a noise signal existing in sensed information. This paper presents a principle of 6-axis force-torque sensor briefly, a double-hole structure to be able to improve a structural error, and then a signal conditioning to reduce the effect of a noise signal. The validity of the proposed method is investigated through experimental study, which shows that SIN ratio is improved significantly in our experimental setup, and the sensor can be implemented cheaply with reasonable performance.

3D FE Analysis of Hall Effect Torque Sensor and Shape Design of Its Stator teeth (홀소자 토크센서의 3차원 유한요소해석 및 고정자 치 형상설계)

  • Lee, Bo-Ram;Kim, Young-Sun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.702_703
    • /
    • 2009
  • Electric Power Steering(EPS) system is superior to conventional Hydraulic Power Steering(HPS) system in aspect of fuel economy and environmental concerns. The EPS system consists of torque sensor, electric motor, ECU(Electric Control Unit), gears and etc. Among the elements, the torque sensor is one of the core technologies of which output signal is used for main input of EPS controller. Usually, the torque sensor has used torsion bar to transform torsion angle into torque. The torsion angle of both ends of a torsion bar is measured by a contact variable resistor. In this paper, the sensor is accurately analyzed using 3D finite element method and its characteristics with respect to four different shapes of the stator teeth are compared. The four shapes are rectangular, triangular, trapezoidal and circular type.

  • PDF

유한요소해석을 이용한 조향장치 토크센서의 설계에 관한 연구

  • 양현익;김용기;노병옥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.826-829
    • /
    • 1995
  • The oil-pressure type torque sensor has been adopted in steering system of major automobiles. However, it has been well known that this type of torque sensor needed many subcomponents and produced inaccurate responses. This paper intends to suggest new type of torque sensor based on the shape design by using finite element. A dedicated mesh generation, analysis and post result display program has been developed. As for shape design purpose, the half shape of torque sensor is considered. The result of this study has shown that the design automation for precise torque sensor for control of high velocity rotation shaft can be achieved whithout any expensive investment to the design software.

  • PDF

Development of Non-contact Torque Sensor (비접촉 토오크센서의 개발(I))

  • Son, Dae-Rak;Im, Sun-Jae;Kim, Chang-Seok;Nam, Gung-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.29-33
    • /
    • 1992
  • A non-contact torque sensor was developed using amorphous alloy. The change of maixmum magnetic induction of C0-based amorphous alloy under the tensile and compressive stress was proportional to applied torque. For the construction of the torque sensor, a glass fiber reinforced-epoxy rod was used as shaft. The amorphous strips were attached on the epoxy shaft in the direction of $+45^{\circ}$and $-45^{\circ}$. The magnetizing coil and 2 sensing coil was installed. The static and dynamic test was carried out. The linearity and sensor hysteresis of the torque sensor was less than 1%.

  • PDF

Strain Analysis of a Six Axis Force-Torque Sensor Using Cross-Shaped Elastic Structure with Circular Holes (원구멍이 있는 십자형 탄성체를 가진 6축 힘, 토크 센서의 변형률 해석)

  • Kim, Joo-Yong;Kang, Chul-Goo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.5-14
    • /
    • 1999
  • The necessity of six axis force-torque sensors is well recognized in the fields of automatic fine assembly, deburring polishing, and automatic fish processing using robotic manipulators. The paper proposes a simple and compact elastic structure of the force-torque sensor which senses externally applied three force and three torque components. Rough surface strain distribution of the elastic structure is examined analytically, and then more accurate surface strain are obtained from finite element analysis. The compliance matrix which is a linear relationship between force components and strain measurements is obtained for the proposed sensor. Some basic principles of measuring 3 force and torque components are also presented.

  • PDF

An Experimental Analysis on the Stewart Platform-Based 6 Axis Force-Torque Sensor (Stewart Platform 방시그이 6축 힘-토크 센서에 관한 실험적 해석)

  • Han, J.H.;Kang, C.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.78-83
    • /
    • 1997
  • The paper presents the experimental analysis of a Stewart platform-based force-torque senor. The closed-form solution of forward kinematics of the Stewart platform is derived approximately by way of a linearization technique, and the solution is used in the force analysis of the force-torque sensor. An exper- mental studies show that the proposed method including gravity compensation algorithm is valid for Stew- art platform-based force-torque sensors. The performance of the developed force-torque sensor is evaluated in view of accuracy and linearity in measurements.

  • PDF

Wide-range Speed Control Scheme of BLDC Motor Based on the Hall Sensor Signal

  • Lee, Dong-Hee
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.714-722
    • /
    • 2018
  • This paper presents a wide-range speed control scheme of brushless DC (BLDC) motors based on a hall sensor with separated low- and normal-speed controllers. However, the use of the hall sensor signal is insufficient to detect motor speed in the low-speed region because of low sensor resolution and time delay. In the proposed method, a micro-stepping current control method according to the torque angle variation is presented. In this mode, the motor current frequency and rotating angle are determined by the reference speed without the actual speed fed by the hall sensor. The detected torque angle is used to adjust the current value in a limited band to control the current value in accordance with the load. The torque angle is detected exactly at the changing point of the hall sensor signal. The rotor can follow the rotating flux with the variable torque angle. In a normal speed range, the conventional vector control scheme is used to control the motor current with a PI speed controller using the hall sensor. The torque characteristics are analyzed on the basis of the back EMF and current shape. To adopt the vector control scheme, the continuous rotor position is estimated by the measured speed and hall sensor position. At the mode changing point between low and normal speed range, the proper initial current command and reference rotor position are calculated. The calculated current command can reduce the torque ripple during transient mode. The proposed method is simple but effective in extending the speed control range of a conventional BLDC motor with hall sensor without the need for a high-resolution encoder. The effectiveness of the proposed method is verified by various experiments on a practical BLDC motor.

Development of Multi-Degree of Freedom Carbon Fiber Plate Force/Torque Sensor (다자유도 탄소섬유판 힘/토크 센서 개발)

  • Lee, Dong-Hyeok;Kim, Min-Gyu;Cho, Nahm-Gyoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.170-177
    • /
    • 2012
  • A force/torque sensor using carbon fiber plate was designed and developed to make the sensor be able to measure a wide range of multi degree of force and torque. Using carbon fiber plate of 0.3 mm thickness, the sensor was designed and developed, which has a ${\mu}N$ level order of resolution and about 0.01 N ~ 390 N of wide measurement range. The elastic deformation part has a tripod plate structure and strain gauges are attached on the part to detect the force/torque. The coefficient of determination for the sensor is over 0.955 by the calibration experiment so that the linearity of the sensor is confirmed to be good. Also, experiments on applying 0.005 ~ 40 kg (0.05 ~ 390 N) to each axis were implemented and the sensor is proved to be safe under a high load. Finally, to verify the function calculating the direction of load vector, the directions of various load vectors which have the same magnitude but different directions and the directions of the calculated load vectors are compared and analyzed to accord well.

External Force Estimation by Modifying RLS using Joint Torque Sensor for Peg-in-Hole Assembly Operation (수정된 RLS 기반으로 관절 토크 센서를 이용한 로봇에 가해진 외부 힘 예측 및 펙인홀 작업 구현)

  • Jeong, Yoo-Seok;Lee, Cheol-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.1
    • /
    • pp.55-62
    • /
    • 2018
  • In this paper, a method for estimation of external force on an end-effector using joint torque sensor is proposed. The method is based on portion of measure torque caused by external force. Due to noise in the torque measurement data from the torque sensor, a recursive least-square estimation algorithm is used to ensure a smoother estimation of the external force data. However it is inevitable to create a delay for the sensor to detect the external force. In order to reduce the delay, modified recursive least-square is proposed. The performance of the proposed estimation method is evaluated in an experiment on a developed six-degree-of-freedom robot. By using NI DAQ device and Labview, the robot control, data acquisition and The experimental results output are processed in real time. By using proposed modified RLS, the delay to estimate the external force with the RLS is reduced by 54.9%. As an experimental result, the difference of the actual external force and the estimated external force is 4.11% with an included angle of $5.04^{\circ}$ while in dynamic state. This result shows that this method allows joint torque sensors to be used instead of commonly used external sensory system such as F/T sensors.