• Title/Summary/Keyword: Torque Saturation

Search Result 119, Processing Time 0.026 seconds

Study on Switching Angle Characteristics for Driving Performance Improvement of SRM Drive (SRM 드라이브의 운전성능 향상을 위한 스위칭각 특성에 관한 연구)

  • 오석규;최대완;안진우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.506-513
    • /
    • 2001
  • The torque of an SRM depends on the phase current and derivative of inductance. But an SRM is difficult to control the desired torques because of saturation in magnetic circuit An SRM is controlled by parameters of input voltage, and switch on , off angle The switch on off angles of an SRM regulate the magnitude and shape of current waveform and decide the magnitude and shape of torque This paper proposes an the optimization control scheme by adjusting both the switch on an switch off angle . The switch off angles are decided by reference of efficiency using simulation and experiments. The switch on angles are decided by load torque , And the dwell angles are controlled for torque control and speed control using GA-neural network which is used to simulated the reasonable switching angle.

  • PDF

Equivalent Circuit Analysis of Single Phase Induction Motor Considering Magnetic Saturation Characteristics (자기포화 특성을 고려한 단상유도전동기의 등가회로 해석)

  • Kim, Young Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.270-277
    • /
    • 2013
  • Single phase induction motor(SPIM) is used widely because it is driven by single phase source. However, the efficiency of the motor is not good due to saturation of magnetic material. To analyze the motor accurately, the magnetic saturation characteristics should be considered in analysis of equivalent circuit. In this paper, lumped parameter of circuit are derived from multi phase induction motor using method of symmetrical coordinates. Also, we presents a method for the equivalent circuit analysis of SPIM using magnetic saturation rate. The magnetic nonlinearity is considered deriving magnetizing reactance from voltage-current saturation curve. As a results, current characteristic, torque, output and efficiency are shown through analysis of equivalent circuit. A simulation results of SPIM will be used to improve the characteristics and efficiency of motor.

Trajectory generation for contour control of mechatronics servo systems subjected to torque constraints

  • Goto, Satoru;Nakamura, Masatoshi;Kyura, Nobuhiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.66-70
    • /
    • 1994
  • The actuator saturation defects the countour control performance of mechatronics servo systems. In this paper, trajectory generation of contour control of the mechatronics servo system is developed taking into account of the constraints of the torque in the system. By using the generated trajectory, the torque constraint and assigned working accuracy are satisfied and the accurate contour control performance is achieved.

  • PDF

Study on Basic Magnetic Characteristics in New Magnetic Materials (새 자성 재료의 기초자기특성 연구 (1) 자성체 기초특성의 새측정법 연구)

  • 이용호;김인수;신용돌;이연숙;이영희
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.85-88
    • /
    • 1991
  • A high sensitive magnetometer using piezoelectric torque sensor was built. The torque produced on the magnetizde sample with small oscillating magnetic field was measured by a piezoelectric sensor. The torque is proportional to the magnetization of the sample. Errors of the measurement for saturation magnetization remain less than 5 % compared to existing standard values.

  • PDF

An Asymmetric Rotor Design of Interior Permanent Magnet Synchronous Motor for Improving Torque Performance

  • Yoon, Myung-Hwan;Kim, Doo-Young;Kim, Sung-Il;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.387-393
    • /
    • 2015
  • Torque ripple is necessarily generated in interior permanent magnet synchronous motors (IPMSMs) due to the non-sinusoidal distribution of flux density in the air gap and the magnetic reluctance by stator slots. This paper deals with an asymmetric rotor shape to reduce torque ripple which can make sinusoidal flux density distribution in the air gap. Meanwhile the average torque is relatively increased by the asymmetric rotor. Response surface method (RSM) is applied to find the optimum position of the permanent magnets for the IMPSM with improved torque performance. Consequently, an asymmetric structure is the result of RSM and the structure has disadvantage of a mechanical stiffness. Finally, the performance of suggested shape is verified by finite element analysis and structural analysis is conducted for the mechanical stiffness.

Torque Ripple Minimization in Switched Reluctance Motor Drives Considering Magnetic Saturation (자기포화를 고려한 SRM의 토크리플 저감 제어)

  • Kang, Junho;Kim, Jaehyuck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.7
    • /
    • pp.48-54
    • /
    • 2014
  • This paper discusses study of torque ripple minimization employing an improved TDF(torque distribution function)-based instantaneous torque control to reduce acoustic noise and vibration problem of the SRM. As the flux linkage of the SRM is a nonlinear function of phase current and rotor position, design of optimal controller for the SRM is quite complicated. Hence, an accurate mathematical model considering the nonlinearity of the SRM is required. An improved TDF based torque control has been proposed in order to reduce the toque ripple at high speed operation. Dynamic simulation using Matlab/Simulink as well as Finite Element Analysis is presented. A prototype SRM for electric vehicle traction has been manufactured to validate the experimental results comparing the dynamic simulation results.

The Analysis of Torque Ripple of SRM Using Artificial Neural Network (신경회로망을 이용한 SRM의 맥동토오크 해석)

  • 오석규;최태완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.256-262
    • /
    • 1998
  • The torque of SRM depends on phase current and the derivative of inductance. But the inductance of SRM is nonlinearly changed according to rotor position angle and phase current because of saturation in magnetic circuit, and it is difficult to control the desired torque. This paper proposes inductance modeling method using ANN(Artificial Neural Network) that is used to simulate the inductance which is nonlinearly varied with rotor position and current. The torque ripple is analyzed and input voltage and current condition to reduce torque ripple is simulated by inductance model.

  • PDF

A new approach to control of variable reluctance motors for DD robots (DD 로봇용 VR 모터의 제어를 위한 새로운 방식)

  • 김창환;하인중;하태균;고명삼;김동일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.664-669
    • /
    • 1992
  • In this paper, we present a DSP-based high dynamic performance torque control scheme of variable reluctance motors(VRM's) for DD(Direct Drive) robots via function inversion technique. The VRM with our controller behaves like DC motors, and hence developed torque tracks given torque command accurately with no torque ripples. Furthermore, our torque control algorithm ensures the production of maximum constant torque under maximum current limitation, minimizes power loss in each phase resistance, and takes magnetic saturation effect into account. Also, since our control algorithm is represented in the form of look-up table, it can be easily implemented with simple digital circuits and this tabular design method is computationally more accurate and simpler compared to the prior methods.

  • PDF

Identification of saturation-type nonlinear feedback control systems

  • Yeping, Sun;Kasiwagi, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.161-164
    • /
    • 1996
  • The authors have recently proposed a new method for identifying Volterra kernels of nonlinear control systems by use of M-sequence and correlation technique. A specially chosen M-sequence is added to the nonlinear system to be identified, and the crosscorrelation function between the input and output is calculated. Then every crosssection of Volterra kernels up to 3rd order appears at a specified delay time point in the crosscorrelation. This method is applied to a saturation-type nonlinear feedback control system of mechanical-electrical servo system having torque saturation nonlinearity. Simulation experiments show that we can obtain Volterra kernels of saturation-type nonlinear system, and a good agreement is observed between the observed output and the calculated one from the measured Volterra kernels.

  • PDF