• Title/Summary/Keyword: Torque Optimization

Search Result 338, Processing Time 0.027 seconds

Research Trends for Performance, Safety, and Comfort Evaluation of Agricultural Tractors: A Review

  • Kabir, Md. Shaha Nur;Ryu, Myong-Jin;Chung, Sun-Ok;Kim, Yong-Joo;Choi, Chang-Hyun;Hong, Soon-Jung;Sung, Je-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.21-33
    • /
    • 2014
  • Background: Significant technological development and changes happened in the tractor industries. Contrariwise, the test procedures of the major standard development organizations (SDO's) remained unchanged or with a little modification over the years, demanding new tractor test standards or improvement of existing ones for tractor performance, safety, and comfort. Purpose: This study focuses on reviewing the research trends regarding performance, safety and comfort evaluation of agricultural tractors. Based on this review, few recommendations were proposed to revise or improve the current test standards. Review: Tractor power take-off power test using the DC electric dynamometer reduced human error in the testing process and increased the accuracy of the test results. GPS signals were used to determine acceleration and converted into torque. High capacity double extended octagonal ring dynamometer has been designed to measure drawbar forces. Numerical optimization methodology has been used to design three-point hitch. Numerous technologies, driving strategies, and transmission characteristics are being considered for reducing emissions of gaseous and particulate pollutants. Engine emission control technology standards need to be revised to meet the exhaust regulations for agricultural tractors. Finite Element Analysis (FEA) program has been used to design Roll-Over Protective Structures (ROPS). Program and methodology has been presented for testing tractor brake systems. Whole-body vibration emission levels have been found to be very dependent upon the nature of field operation performed, and the test track techniques required development/adaptation to improve their suitability during standardized assessment. Emphasizes should be given to improve visibility and thermal environment inside the cab for tractor operator. Tractors need to be evaluated under electromagnetic compatibility test conditions due to large growing of electronic devices. Research trends reviewed in this paper can be considered for possible revision or improvement of tractor performance, safety, and comfort test standards.

Genetic Programming with Weighted Linear Associative Memories and its Application to Engineering Problems (가중 선형 연상기억을 채용한 유전적 프로그래밍과 그 공학적 응용)

  • 연윤석
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.57-67
    • /
    • 1998
  • Genetic programming (GP) is an extension of a genetic algoriths paradigm, deals with tree structures representing computer programs as individuals. In recent, there have been many research activities on applications of GP to various engineering problems including system identification, data mining, function approximation, and so forth. However, standard GP suffers from the lack of the estimation techniques for numerical parameters of the GP tree that is an essential element in treating various engineering applications involving real-valued function approximations. Unlike the other research activities, where nonlinear optimization methods are employed, I adopt the use of a weighted linear associative memory for estimation of these parameters under GP algorithm. This approach can significantly reduce computational cost while the reasonable accurate value for parameters can be obtained. Due to the fact that the GP algorithm is likely to fall into a local minimum, the GP algorithm often fails to generate the tree with the desired accuracy. This motivates to devise a group of additive genetic programming trees (GAGPT) which consists of a primary tree and a set of auxiliary trees. The output of the GAGPT is the summation of outputs of the primary tree and all auxiliary trees. The addition of auxiliary trees makes it possible to improve both the teaming and generalization capability of the GAGPT, since the auxiliary tree evolves toward refining the quality of the GAGPT by optimizing its fitness function. The effectiveness of this approach is verified by applying the GAGPT to the estimation of the principal dimensions of bulk cargo ships and engine torque of the passenger car.

  • PDF

Experimental Study of Lunar Rover Wheel's Motion Performance on Korean Lunar Soil Simulant (한국형 인공월면토를 이용한 달탐사 로버 휠 성능평가 실험 연구)

  • Wang, Cheng-Can;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.97-108
    • /
    • 2016
  • Lunar rover plays an important role in lunar exploration. Especially, performance of rover wheel related to interaction with lunar soil is of great importance when it comes to optimization of rover's configuration. In this study, in order to investigate the motion performance of lunar rover's wheel on Korean Lunar Soil Simulant (KLS-1), a single wheel testbed was developed and used to carry out a series of experiments with two kinds of wheel with grousers and without grousers which were used to perform the experiments. Wheel traction performance was evaluated by using traction parameters such as drawbar pull, torque and sinkage correlated with slip ratio. The results showed that the single wheel testbed was suitable for evaluation of the performance of wheel and rover wheel with grousers which was likely to have higher traction performance than that without grousers in Korean Lunar soil simulant. The experimental results could be utilized in verification of the optimum wheel design and effectiveness of wheel traction for Korean lunar rover.

Development of Core Technologies of Multi-tasking Machine Tools for Machining Highly Precision Large Parts (고정밀 대형 부품가공용 복합가공기 원천기술 개발)

  • Jang, Sung-Hyun;Choi, Young-Hyu;Kim, Soo-Tae;An, Ho-Sang;Choi, Hag-Bong;Hong, Jong-Seung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.129-138
    • /
    • 2012
  • In this study, three types of large scale multi-tasking machine tools together with core technologies involved have been developed and introduced; a multi-tasking machine tool for large scale marine engine crankshafts, a multi-tasking vertical lathe for windmill parts, and a large scale 5-axis machine tool of gantry type. Several special purpose devices has been necessarily developed for the purpose of handling and machining big and heavy workpieces accurately, such as PTD (Pin Turning Device) with revolving ring spindle for machining eccentric crankshaft pins, hydrostatic rotary table and steady rest for supporting and resting heavy workpieces, and 2-axis automatic swiveling head for high-quality free surface machining. Core technologies have been also developed and adopted on their detail design stage; 1) structural design optimization with FEM structural analysis, 2) theoretical hydrostatic analysis for the PTD and rotary table bearings, 3) box-in-box type cross-rail and octagonal ram design to secure machine rigidity and accuracy, 4) constant spindle rpm control against gravitational torque due to unbalanced workpiece.

Parameter Optimization of the Marine Gyrocompass Follow-up System (자이로콤파스 추종계통의 최적조정)

  • 이상집
    • Journal of the Korean Institute of Navigation
    • /
    • v.5 no.2
    • /
    • pp.49-58
    • /
    • 1981
  • One of the main purposes of the marine gyrocompass follow-up system is to preserve the sensitive part from the wandering error due to the frictional or torsional torque around the vertical axis. This error can be diminished through the rapid follow-up action, which minimizes the relative azimuthal angular displacement between the sensitive and follow-up parts and shortens the duration of the same displacement. But an excessive rapidity of the follow-up action would result in a sustained oscillation to the system. Therefore, to design a new type of the follow-up system, the theoretical annlysis of the problems concerned should be studied systematically by introducing the control theory. This paper suggest a concrete procedure for the optimal adjustment of the gyrocompass follow-up system, utilizing the mathematic model and the stability informations formerly investiaged by the author. For theoptimal determination of the adjustable paramfter K, the performance index(P.I.), ITSE(Intergral of the Time multiplied by the Squared Error) is proposed, namely, P.I. = $\int_{0}^{\infty} t \cdot e^{2}(t)dt$ where t is time and e(t) means control error. Then, the optimal parameter minimizing the performance index is calculated by means of Parseval's theorem and numerical computation, and the validity of the obtained optimal value of the parameter Ka is examined and confirmed through the simulations and experiments. By using, the proposed method, the optimal adjustment can be performed deterministically. But, this can not be expected in the conventional frequency domain analysis. While the Mps of the original system vary to the extent of from 0.98 to 46.27, Mp of the optimal system is evaluated as 1.1 which satisfies the generally accepted frequency domain specification.

  • PDF

Design of Planetary Gear Drive Unit for Drive Conversion of Transfer case (Transfer case의 구동변환을 위한 유성기어장치 구동부 설계)

  • Youm, Kwang-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.21-26
    • /
    • 2022
  • Since the four-wheel drive transmits the driving force to all four wheels, the traction with the road surface increases, thereby increasing the driving force. However, it has the disadvantage of lowering fuel efficiency. Therefore, four-wheel drive is commonly used as a method of converting to optional four-wheel drive when necessary while driving in two-wheel drive. This selective four-wheel drive converts the driving force by mechanically changing the electric signal sent by the driver in the transfer case. In this study, in order to mechanically change the electrical signal, a reducer is applied to the motor to increase the torque to perform the function. Therefore, in this study, a reduction mechanism applicable to the motor inside the transfer case applied to convert the drive is derived, and the reduction ratio applying the planetary gear type is optimized accordingly. And based on the derived reduction ratio, two sets of planetary gears using a ring gear in common were applied to develop a planetary gear tooth type in which the input shaft and output shaft are decelerated in the same phase. Optimization design was carried out.

Analysis of Combined Motor and Electronic Speed Control Efficiency Using Contour Plots (등치선도를 이용한 모터와 전자 변속기 통합 효율 분석)

  • Seokhwan Lee;Hyeonsu Hwang;Hong-Su Nam;Hak-Tae Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.2
    • /
    • pp.214-220
    • /
    • 2023
  • Because there exist a region in the rotational speed and torque map that the a particular combination of a motor and an ESC (Electronic Speed Control) can maintain its peak efficiency, identifying this region is important for designing an efficient system. Firstly the accuracy of the measurement device is verified using the published propeller measurement data. And then, the combined motor-ESC efficiencies of an individual propeller are measured at a wide range of rotational speeds. With measurements obtained from a large number of different propellers, efficiency contours are obtained. It is shown that there exist a significant difference between the measured combined efficiency and the motor efficiency computed using a simple model. In addition, with the same motor, the combined efficiency can have a meaningful variation depending on the model of the ESC. The efficiency contours derived from this study will be useful for the design and optimization of electric propulsion systems of an aircraft where propulsion efficiency is critical.

Prediction of PTO Power Requirements according to Surface energy during Rotary Tillage using DEM-MBD Coupling Model (이산요소법-다물체동역학 연성해석 모델을 활용한 로타리 경운작업 시 표면 에너지에 따른 PTO 소요동력 예측)

  • Bo Min Bae;Dae Wi Jung;Jang Hyeon An;Se O Choi;Sang Hyeon Lee;Si Won Sung;Yeon Soo Kim;Yong Joo Kim
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.44-52
    • /
    • 2024
  • In this study, we predicted PTO power requirements based on torque predicted by the discrete element method and the multi-body dynamics coupling method. Six different scenarios were simulated to predict PTO power requirements in different soil conditions. The first scenario was a tillage operation on cohesionless soil, and the field was modeled using the Hertz-Mindlin contact model. In the second through sixth scenarios, tillage operations were performed on viscous soils, and the field was represented by the Hertz-Mindlin + JKR model for cohesion. To check the influence of surface energy, a parameter to reproduce cohesion, on the power requirement, a simple regression analysis was performed. The significance and appropriateness of the regression model were checked and found to be acceptable. The study findings are expected to be used in design optimization studies of agricultural machinery by predicting power requirements using the discrete element method and the multi-body dynamics coupling method and analyzing the effect of soil cohesion on the power requirement.