• 제목/요약/키워드: Torque Generator

검색결과 299건 처리시간 0.029초

스위칭각 변화에 따른 SRG 정전압 및 토오크 특성 (The Characteristics of SRG's Constant Voltage And Torque According to Change Switching Angle)

  • 오재석;오주환;권병일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.74-76
    • /
    • 2005
  • The SRG(Switched Reluctance Generator) consists of simple stator and rotor. The advantage of SRG is very endurance and low cost. Because of SRG have no magnetic, So we should obtain current of magnetic to stator. But in this step SRG have disadvantage. Disadvantage of SRG is more torque ripple, vibration and noise than other machines. This paper shows the simulation of SRG with 3phases, 6 stator poles and 4 rotor poles. We intpret the characteristics of SRG's constant voltage and torque ripple according to change switching angle.

  • PDF

Aero-elastic coupled numerical analysis of small wind turbine-generator modelling

  • Bukala, Jakub;Damaziak, Krzysztof;Karimi, Hamid Reza;Malachowski, Jerzy
    • Wind and Structures
    • /
    • 제23권6호
    • /
    • pp.577-594
    • /
    • 2016
  • In this paper a practical modelling methodology is presented for a series of aero- servo- elastic- coupled numerical analyses of small wind turbine operation, with particular emphasis on variable speed generator modelling in various wind speed conditions. The following characteristics are determined using the available computer tools: the tip speed ratio as a function of the generator constant (under the assumption of constant wind speed), the turbine coefficient of power as a function of the tip speed ratio (the torque curve is modified accordingly and generator speed and power curves are plotted), turbine power curves and coefficient of power curve as functions of the incoming wind speed. The last stage is to determine forces and torques acting on rotor blades and turbine tower for specific incoming wind speeds in order to examine the impact of the stall phenomena on these values (beyond the rated power of the turbine). It is shown that the obtained results demonstrate a valuable guideline for small wind turbines design process.

The secondary excited induction generator in random wave input system

  • Kim, Moon-Hwan
    • Journal of information and communication convergence engineering
    • /
    • 제7권2호
    • /
    • pp.209-214
    • /
    • 2009
  • The employment of the induction generator is preferable in the natural energy utilization by the minimum maintenance and the mechanical robustness, Another merit is also expected when it is connected to the power network system, because constant-voltage and constant frequency (CVCF) power generation is easily realized in spite of the variation of the rotor speed. However the induction generator needs much amount of the reactive power that reduces power factor in the primary side. The improvement of power factor in the primary side requires large VAR compensator, this point is solved, the merit of the induction machine as a main generator will become more established. This paper proposes a novel approach where the secondary is controlled by a PWM inverter not only to get CVCF power but also to improve the primary power factor. Basically the inverter is controlled so that the field current is supplied from the secondary side in this approach. The required capacity of the inverter is small, because only the slip power is controlled in the secondary side. In the experimental system where the sea wave torque simulator is used, the power factor is well improved by the microcomputer controlled PWM inverter.

Experimental Assessment with Wind Turbine Emulator of Variable-Speed Wind Power Generation System using Boost Chopper Circuit of Permanent Magnet Synchronous Generator

  • Tammaruckwattana, Sirichai;Ohyama, Kazuhiro;Yue, Chenxin
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.246-255
    • /
    • 2015
  • This paper presents experimental results and its assessment of a variable-speed wind power generation system (VSWPGS) using permanent magnet synchronous generator (PMSG) and boost chopper circuit (BCC). Experimental results are obtained by a test bench with a wind turbine emulator (WTE). WTE reproduces the behaviors of a windmill by using servo motor drives. The mechanical torque references to drive the servo motor are calculated from the windmill wing profile, wind velocity, and windmill rotational speed. VSWPGS using PMSG and BCC has three speed control modes for the level of wind velocity to control the rotational speed of the wind turbine. The control mode for low wind velocity regulates an armature current of generator with BCC. The control mode for middle wind velocity regulates a DC link voltage with a vector-controlled inverter. The control mode for high wind velocity regulates a pitch angle of the wind turbine with a pitch angle control system. The hybrid of three control modes extends the variable-speed range. BCC simplifies the maintenance of VSWPGS while improving reliability. In addition, VSWPGS using PMSG and BCC saves cost compared with VSWPGS using a PWM converter.

탑재형 발전기 적용에 따른 이상소음 개선 방안에 관한 연구 (A study on the way to improve abnormal noise by applying vehicle fitting type generator)

  • 김선진;김성곤;윤성호;신철호
    • 한국산학기술학회논문지
    • /
    • 제21권6호
    • /
    • pp.266-274
    • /
    • 2020
  • 본 연구는 소형전술차량에 적용된 탑재형 발전기에 의해 발생되는 이상 소음 개선방안에 대한 것이다. 소형전술차량은 탑재형 발전기의 장착 유·무로 구분되며, 개발 시험 시 이에 따른 소음 크기의 차이는 없었다. 하지만, 차량을 운용하면서 사용자가 느끼기에 불쾌한 소음(이상 소음)이 발생된다는 지속적인 문제제기에 따라 품질개선을 수행하게 되었다. 품질개선을 수행하기에 앞서 탑재형 발전기 단품 및 장착 구조와 문제가 제기된 차량에 대한 현상 확인 및 원인 분석을 수행하였다. 이를 통해 탑재형 발전기 장착에 따라 발생하는 이상 소음은 래틀소음에 의한 것임을 확인하였다. 엔진 구동계에서 래틀소음이 발생되는 일반적인 원인은 엔진 폭발 행정시 발생되는 불규칙한 회전력의 전달과 엔진 연결기와 회전자 조립체 간 스플라인-세레이션 연결 구조에서 발생되는 기어 백래쉬에 의한 것이었다. 따라서, 본 연구에서는 원인으로 분석된 이상 소음의 원인을 해소하기 위해 댐퍼형 연결기를 적용하는 개선방안을 수립하였다. 개선 방안에 대해서는 엔진의 불규칙한 회전력의 영향성, 소음의 정도, 동특성 해석 및 단품 내구시험 등을 통해 개선효과를 확인하였다.

풍력발전용 권선형 유도발전기의 회전자 여자주파수를 이용한 속도와 출력제어 (A Speed and Power Control of DFIG Using the Exciting Frequency for Wind Power Generating)

  • 이우석;오철수
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권7호
    • /
    • pp.349-356
    • /
    • 1999
  • Wide operating range and speed control is needed for wind power generating and a Doubly Fed Induction Generator(DFIG) has good adaptivity for that purpose. This paper deals with the speed and power control using the Grid connected DFIG in the super-synchronous speed regions, by controlling frequency and voltage fed to the rotor. Power flow of the DFIG and steady-state algebraic equations of the equivalent circuit are analyzed. For the speed control analysis, torque simulation is performed whereby the different slip between operating motor driving frequency and synchronous frequency of M-G system applied. To keep the output rating of the generator, the exciting frequency and voltage attenuation are applied.

  • PDF

도로용 발전장치 개발을 위한 에너지 발생기구 해석 (A Numerical Study of Energy Mechanism for Development of Road Generator System)

  • 이석영
    • 한국정밀공학회지
    • /
    • 제31권10호
    • /
    • pp.935-945
    • /
    • 2014
  • This paper presents a new road generative system that employs a pad of preventive overspeed or tollgate. The system consists of pad, shaft, torsional damper, oneway-clutch, gear system, and electricity generator components. When the car driven through the road generation system, it occurred to surplus energy in the DC power. In order to maximize the power of electricity energy harvester, the simulation software is developed. It is used to determine parametric dimension for optimal design with the theoretically calculated results from the simulation software. The transient responses at the conditions of low and high vehicle speed are compared with the calculated results as torque, impact force, power, out energy etc. Consequently, before design a road generation system, the analysis of simulation results shows that the proposed concept and system has efficiency and confidence.

가변속 풍력 발전용 영구자석형 동기발전기의 적응 슬라이딩 모드 제어기 설계 (Adaptive Sliding Mode Controller Design of Permanent Magnet Synchronous Generator for Variable-Speed Wind Turbine System)

  • 김성수;최한호
    • 제어로봇시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.315-319
    • /
    • 2016
  • This paper proposes a simple adaptive sliding mode control algorithm for controlling a permanent magnet synchronous generator (PMSG) of a MW-class direct-driven wind turbine system. The proposed adaptive sliding mode controller does not require accurate knowledge of the PMSG parameter or turbine torque values. The proposed controller can accurately track the reference angular speed computed by the maximum power point tracking(MPPT) algorithm. Finally, this paper gives Matlab/Simulink simulation results to verify the practicality and effectiveness of the proposed adaptive sliding mode controller.

조력발전소 조위 제약사항을 고려한 발전기 효율시험에 관한 연구 (A Study of a Generator Efficient Testing Method that Incorporates Tidal Limitations)

  • 김현한;전정표;김광호
    • 산업기술연구
    • /
    • 제33권A호
    • /
    • pp.23-30
    • /
    • 2013
  • Tidal power generation is to produce electrical energy from fluctuations of the ebb and flow in a constructed embankment. More specifically, the sinusoidal variations of tidal flow, along with the periodicity and changes in the height of waves over time make the tidal power generation possible at a certain tidal level. This paper proposes a more practical efficiency test method for tidal power plant generator that utilizes the axis torque changing values rather than the retardation method which is commonly used. The proposed method was compared with the conventional method and the test result shows that proposed method provides a similar accuracy with the conventional retardation method and a better efficiency.

  • PDF

Modeling and Control of Three-Phase Self-Excited Induction Generator Connected to Grid

  • Chandrasekaran, Natarajan;Karthikeyan, A
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권5호
    • /
    • pp.265-272
    • /
    • 2017
  • This paper presents the dynamic modeling, analysis, and control of an AC/DC/AC-assisted, self-excited induction generator connected to the grid. The dynamic model includes wind turbine models with pitch control, gear boxes, self-excited induction generators, excitation capacitance, inductive load models, controlled six-pulse rectifiers, and novel state-space models of a grid-connected inverter. The system has been simulated to verify its capabilities of buildup voltage, stator flux response, stator phase current, electromagnetic torque, and magnetizing inductance variation during both the dynamic and steady states with a variable-speed prime mover. The complete setup of the above dynamic models was simulated using MATLAB/SIMULINK.