• Title/Summary/Keyword: Torque Flow rate

Search Result 112, Processing Time 0.029 seconds

Durability Development of 1000cc Level Gasoline Engine (1000cc급 가솔린 엔진의 내구성능 개발)

  • Kim, Chang-Su;Ahn, Ho-Sang;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5082-5088
    • /
    • 2015
  • In this paper, durability test of 1000cc level gasoline engine has been carried out. Durability test set total 300 hours and WOT condition. Engine torque, power, fuel consumption, blow-by gas flow rate, and oil pressure are measured to analyse performance variation by time. As a result, engine performance of high rpm range gradually reduced by time but for relatively low rpm range shows stable performance. Blow-by gas flow rate shows 0.4% of averaged induction air flow rate, which is excellent rate for 1000cc level gasoline engine. Engine torque and fuel consumption data show the break-in upto 100 hours and aging trend after that. After 300 hours, engine is disassembled and each part is checked for the damage or crack.

Experimental Investigation and Performance Test of Heavy Duty Torque Converter (중부하 토크 컨버터의 실험적 성능분석)

  • Lee, Hae-Jong;kim, Se-Hyun;Lee, Chung-Seub;Lee, Sang-Chul;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.690-695
    • /
    • 2004
  • The present study is an investigation on the characteristics of heavy load toque converter by experimental process. To get the dynamic performance, the dynamometer was used with a parameters of speed, torque, oil pressure and oil flux, etc. The torque converter was tested for various input speed, output oil pressure and input oil flow rate. All experiments were investigated in case that the speed ratio is increased. The torque ratio and capacity factor was in inverse proportion to speed. Engine revolution had a more effects at region of low speed ratio. But, the opposite phenomena were represented increase of efficiency. In result of this experiments, the characteristics of torque converter were not influenced by oil pressure and oil flux.

  • PDF

A Study on the Flow Path Position Design of Waviness Friction Pad for Drag Torque Reduction in Wet Type DCT (파형 습식클러치의 드래그 토크 저감을 위한 파형내 유로 위치 설정 설계 연구)

  • Cho, Junghee;Han, Juneyeol;Kim, Woojung;Jang, Siyoul
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Drag torque reduction in a wet clutch pack is a key aspect of the design process of the dual clutch transmission (DCT) system. In order to reduce the drag torque caused by lubricant shear resistance, recently developed wet clutch pack systems of DCT, as well as automatic transmission and other four-wheel drive (4WD) couplings, frequently utilize wavy wet clutch pads. Therefore, wavy shape of friction pad are made on the groove patterns like waffle pattern for the reduction of drag torque. Additionally, the groove patterns are designed with larger channels at several locations on the friction pad to facilitate faster outflow of lubricant. However, channel performance is a function of the waviness of the friction pad at the location of the particular channel. This is because the discharge sectional area varies according to the waviness amplitude at the location of the particular channel. The higher location of the additional channel on the friction pad results in a larger cross-sectional area, which allows for a larger flow discharge rate. This results in reduction of the drag torque caused by the shear resistance of DCTF, because of marginal volume fraction of fluid (VOF) in the space between the friction pad and separator. This study computes the VOF in the space between the friction pad and separator, the hydrodynamic pressure developed, and the shear resistance of friction torque, by using CFD software (FLUENT). In addition, the study investigates the dependence of these parameters on the location and waviness amplitude of the channel pattern on the friction pad. The paper presents design guidelines on the proper location of high waviness amplitude on wavy friction pads.

Electromagnetic Analysis on the Torque Motor of Servo Valve for the Fuel Supply System of Auxiliary Power Unit (보조 동력 장치 연료 공급용 서보밸브의 토크모터 전자기 해석)

  • Chang, Se-Myong;Jang, Gang-Won;Jeong, Heon-Sul;Rhee, Dong-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.3
    • /
    • pp.7-12
    • /
    • 2007
  • As a main part of an utility helicopter, the APU(Auxiliary Power Unit) has a solenoid valve system operated with a torque motor, which controls the flow rate in the fuel supply system. In this paper, we solved the Maxwell potential equations to analyze the electromagnetic force in the torque motor, and some additional analytic methods are used to compute the quantity of torque produced by the torque motor for the given circuit current. For the convenience, small displacement is assumed, and only magneto-static problem is considered for the two-dimensional cross section. The result will be compared with the three-dimensional analysis that will be studied in the near future.

  • PDF

Friction Torque Analysis of a Hydraulic Motor-Load System using Proportional Control Valve (비례제어밸브를 이용한 유압모터 부하계의 마찰토크 해석)

  • Yu, Hwan-Shin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.760-766
    • /
    • 2010
  • In this paper, The static friction torque and viscous friction torque including hydraulic motor-load system driven by hydraulic proportional control valve analysis. The basic experimental was performed toward characteristic in pressure and flow rate in hydraulic system energy. The variable of friction torque was experiment on brake pressure variable using pneumatic brake system. The analysis of nonlinear friction and linear friction was perform ed toward friction characteristic of hydraulic system.

A Study on the Characteristics of the Hydrostatic Bearing by the Variation of the Orifice in Hydraulic Piston Motor (유압 피스톤 모터의 오리피스 변화에 따른 정압베어링의 특성에 관한 연구)

  • Kim, K.M.;Lee, Y.B.;Kim, T.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.3
    • /
    • pp.7-12
    • /
    • 2010
  • In the case of hydraulic piston motor, hydrostatic bearing is designed to be adapted the hydrostatic bearing for the relative lubrication in the structural design. It's available to make it highly efficient and that's why it's widely used. The thing which largely influence the high pressure, the high efficiency, and the life is the hydrostatic bearing between a shoe and a swash plate. In this study, with the most general "hydrostatic bearing shoe" that has one recess as the subject of this research, I designed and made the 4 kind of piston shoe that have different orifice diameter each other, and studied the features of the hydrostatic bearing by observing the change of the leakage flow rate, the torque and the volumetric efficiency through experiments on the changes of the pressure & the speed of the revolution. As a result, the bigger diameter of the orifice, the less torque. And with an increase of the orifice diameter under the high pressure, the leakage flow rate decreased remarkably. Also it was observed the leakage flow rate increased linearly according to the increase of the supply pressure.

  • PDF

Experimental Analyses of Flow in a Production Torque Converter Using LDV (LDV를 이용한 토크컨버터 내 유동의 실험적 분석)

  • Yoo, S.C.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.757-762
    • /
    • 2018
  • LDV(laser Doppler velocimetry) measurements were conducted on the exit region of the impeller passage and the gap between the impeller and turbine blades under 0.8 speed ratio. The 0.8 speed ratio has an impeller speed of 2000rpm and a turbine speed of 1600rpm. A periodic variation of the mass flow rate is present in many of the measurements made. The frequency of this variation is the same as the frequency of the turbine blades passing the impeller passage exit. It is found that the instantaneous position of the turbine had effect on fluid flow inside the impeller passage and gap region. This study would aid in the construction of higher accuracy CFD models of this complex turbomachinery device.

System-level Analysis of a Fan-motor Assembly for Vacuum Cleaner (진공청소기용 팬-모터 어셈블리의 시스템-레벨 분석)

  • Park, Chang-Hwan;Park, Kyung-Hyun;Chang, Kyung-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.5-14
    • /
    • 2017
  • A fan-motor assembly in a vacuum cleaner is analyzed through system-level analysis method. This system consisted of three components, a fan, motor, and the flow resistance of the motor, or of the vacuum cleaner. System-level analysis method is characterized by the combination of torque matching at a constant throttling condition between the fan and the motor and the pressure drop at a constant flow rate due to the flow resistance of the motor, or of the vacuum cleaner. The performance characteristics of the fan-motor assembly and the vacuum cleaner system could be predicted over the whole range of operation, based on the characteristics of each component. The predicted performance of the vacuum cleaner system through system-level analysis agreed well with the experimental results within 4.5% difference of pressure and 6% difference of the efficiency. The effect of flow resistance of a motor is investigated and it is found that the efficiency decrease of fan-motor assembly at the constant flow rate due to the flow resistance of a motor is determined by the flow resistance ratio(FRR), which is defined as a ratio of flow resistance of motor and the flow resistance of a constant throttling condition of a given point. The fan-motor assembly(S2 model) was modified to reduce the FRR from 9.0% to 2.4% and the experimental result shows that the efficiency of S2 model was improved by about 3% at best efficiency point.

Study on measuring the low torque on an air tool operating at 100,000 RPM class (100,000 RPM급으로 회전하는 에어공구에서의 저토오크 측정에 관한연구)

  • Kim, Eun-Jong;Cho, Soo-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2018-2023
    • /
    • 2003
  • An experiment is conducted for measuring the performance of an air tool, which is operated at 100,000 RPM at the unloaded state with the low torque. An experimental apparatus is developed as the power absorption type dynamometer. Inlet static pressure, flow rate, RPM and force are measured simultaneously. Torque, output power and specific output power are obtained. Those experimental results are compared with the experimental results obtained on a commercial dynamometer. However, no commercial dynamometers are available for measuring the torque above 30,000RPM. In order to use the commercial dynamometer, a reduction gear is applied to the shaft of dynamometer. Torque and power obtained on the commercial dynamometer show 50% lower than those obtained on a power absorption type dynamometer, because the inertia force is added to the air tool rotor for the braking system. Moreover, the starting RPM on the commercial dynamometer is less than 40,000RPM. From the compared results, they show that the power absorption type dynamometer should be applied for measuring the performance of an air tool operating at low torque and high RPM.

  • PDF

Design and Analysis of Gerotor for Hydraulic Motors (유압모터에 사용되는 제로터의 설계 및 해석)

  • 이성철;이성남
    • Tribology and Lubricants
    • /
    • v.11 no.2
    • /
    • pp.63-70
    • /
    • 1995
  • The analytical design method of gerotor profile, based on an envelope of a family of curves, is proposed. Analysis to calculate the flow rate and the torque capacity of a gerotor set are presented. The influence of the circular tooth radius and the amount of eccentricity on the configuration of a gerotor has been explored in this paper. The variation of the inlet volume and the fluctuation of the generated torque are also analyzed.