• 제목/요약/키워드: Topsides systems

검색결과 14건 처리시간 0.02초

단일 설치선을 사용한 2기 해양플랜트 Topside Float Over 설치 시 Jacket Leg의 하중 계산 (Calculation of Load on Jacket Leg during Float-over Installation of Dual Topsides using Single Vessel)

  • 배동열;이승재;이재용
    • 한국해양공학회지
    • /
    • 제29권2호
    • /
    • pp.135-142
    • /
    • 2015
  • The float over method is the most preferred method for installing heavy topside onto a jacket platform. A very complex platform with multiple jacket structures on a specific field requires multiple installation procedures. This study validated the installation of two topsides using a single installation barge to reduce the operation and installation cost. The hydrodynamic properties of the installation barge during the installation of two topsides were calculated. The tension and fender forces during docking were investigated to show the validity of the proposed dual topside installation method. In conclusion, the operational safety of the proposed procedure was validated through the calculation of the motion of the installation vessel and loads on the jacket legs.

통합 프로세스 엔지니어링을 위한 해양 프로세스 기본 설계 방법론 (Offshore Process FEED(Front End Engineering Design) Method for Integrated Process Engineering)

  • 황지현;노명일;차주환;이규열
    • 대한조선학회논문집
    • /
    • 제47권2호
    • /
    • pp.265-277
    • /
    • 2010
  • In this study, an offshore process FEED(Front End Engineering Design) method is systematically established to perform integrated process engineering for topsides systems of LNG FPSO(Floating, Production, Storage, and Off-loading unit) based on the concepts and procedures for the process FEED of general offshore production plants. First, various activities of the general process FEED engineering are summarized, and then the offshore process FEED method, which is suitable for application to all types of offshore oil and gas production plants, is proposed. Second, an integrated process engineering environment is built based on the proposed FEED method. Finally, the integrated process engineering environment is applied to topsides systems of an LNG FPSO in order to verify the validity and applicability of the proposed FEED method. As a result, it is shown that the proposed FEED method can be applied to the process FEED engineering of FPSOs and moreover will be able to contribute to perform successful offshore projects in the future.

FPSO Topsides Pipe Rack 견적 중량 추산 방법 연구 (A Study on Weight Estimation and Calculation of the Pipe Rack Structures for FPSO EPC Projects)

  • 이수호;안현식;김한성;허윤;배재류;김기수;함승호;이성민;노명일
    • 대한조선학회논문집
    • /
    • 제53권5호
    • /
    • pp.362-370
    • /
    • 2016
  • The weight estimation and calculation of FPSO topsides is first performed at the bidding stage of projects. At this time, it is difficult to estimate and calculate accurately the weight because most of items of FPSO are not apparently defined. Especially, in the case of the pipe rack module, its portion of the total weight and the range of weight variation are large due to special features of piping and electric equipment in the module. Thus, it is very important to estimate and calculate accurately its weight in the task of the weight estimation and calculation of FPSO topsides. In this study, the past data for the weight of the pipe rack module were collected and analyzed, the WBS (Work Breakdown Structure) for the pipe rack module was constructed, and primary variables and secondary variables for developing a weight estimation and calculation model were selected. That is, after analyzing the past data, the volume was selected as the primary variable and the regression analysis was performed based on the variable. Then, several secondary variables were selected and incorporated into a weight estimation and calculation model. At this time, the weight per discipline was assumed from ratios of the total weight. Finally, the weight of the pipe rack module was estimated and calculated by using the developed model. As a result, the deviation from the model was better than that (-20 % ~ 60 %) of other studies about the weight estimation and calculation of FPSO topsides. Thus, the validity and applicability of the weight estimation and calculation of the pipe rack could be checked.

최적화 기법을 이용한 부유식 해양 플랜트 상부 구조의 다층 배치 모델 (Multi-floor Layout Model for Topsides of Floating Offshore Plant using the Optimization Technique)

  • 정세용;노명일;신현경
    • 대한조선학회논문집
    • /
    • 제52권1호
    • /
    • pp.77-87
    • /
    • 2015
  • For a floating offshore plant such as FPSO(Floating, Production, Storage, and Off-loading unit), various equipment should be installed in the restricted space, as compared with an onshore plant. The requirement for an optimal layout method of the plant has been increased in these days. Thus, a layout method of the floating offshore plant was proposed in this study. For this, an optimization problem for layout design was mathematically formulated, and then an optimization algorithm based on the genetic algorithm was implemented with C++ language in order to solve it. Finally, the proposed method was applied to an example of FPSO topsides. As a result, it was shown that the proposed method can be applied to layout design of the floating offshore plant such as FPSO.

Dynamic response characteristics of an innovative turretless low motion FPSO hull in central GoM ultra-deep waters

  • Zou, Jun
    • Ocean Systems Engineering
    • /
    • 제12권2호
    • /
    • pp.173-223
    • /
    • 2022
  • In oil and gas industry, FPSO concept is the most popular hull form and ship shaped hull form dominants the FPSO market. Only a non-ship-shaped hull in operations with minor market shares is the cylindrical FPSO hull with medium to small storage capability. To add contracting options and competitions to reduce field development costs, an innovative turretless low motion hull, eco-FPSO, with 1MM bbls oil storage capacity and suitable for installing topsides modulars and equipping with regular SCRs, was first introduced in Zou (2020a). Dynamic characteristic responses of the eco-FPSO compared to the traditional SS-FPSO hull and DD-Semi platform are presented and discussed in this paper, suitability and feasibility of the proposed hull have been demonstrated and validated through extensive analyses in 10-yrp, 100-yrp and 1,000-yrp hurricanes in ultra-deepwater central GoM.

조선 해양 산업에서의 응용을 위한 하둡 기반의 빅데이터 플랫폼 연구 (A Study on Big Data Platform Based on Hadoop for the Applications in Ship and Offshore Industry)

  • 김성훈;노명일;김기수
    • 한국CDE학회논문집
    • /
    • 제21권3호
    • /
    • pp.334-340
    • /
    • 2016
  • As Information Technology (IT) is developed constantly, big data is becoming important in various industries, including ship and offshore industry where a lot of data are being generated. However, it is difficult to apply big data to ship and offshore industry because there is no generalized platform for its application. Therefore, this study presents a big data platform based on the Hadoop for applications in ship and offshore industry. The Hadoop is one of the most popular big data technologies. The presented platform includes existing data of shipyard and is possible to manage and process the data. To check the applicability of the platform, it is applied to estimate the weight of offshore plant topsides. The result shows that the platform can be one of alternatives to use effectively big data in ship and offshore industry.

유전적 프로그래밍 방법을 이용한 부유식 해양 구조물의 중량 추정 모델 (Simplified Model for the Weight Estimation of Floating Offshore Structure Using the Genetic Programming Method)

  • 엄태섭;노명일;신현경;하솔
    • 한국CDE학회논문집
    • /
    • 제19권1호
    • /
    • pp.1-11
    • /
    • 2014
  • In the initial design stage, the technology for estimating and managing the weight of a floating offshore structure, such as a FPSO (Floating, Production, Storage, and Off-loading unit) and an offshore wind turbine, has a close relationship with the basic performance and the price of the structure. In this study, using the genetic programming (GP), being used a lot in the approximate estimating model and etc., the weight estimation model of the floating offshore structure was studied. For this purpose, various data for estimating the weight of the floating offshore structure were collected through the literature survey, and then the genetic programming method for developing the weight estimation model was studied and implemented. Finally, to examine the applicability of the developed model, it was applied to examples of the weight estimation of a FPSO topsides and an offshore wind turbine. As a result, it was shown that the developed model can be applied the weight estimation process of the floating offshore structure at the early design stage.

최적화 기법을 이용한 부유식 해양 구조물의 배치 방법 (Layout Method of a Floating Offshore Structure Using the Optimization Technique)

  • 정세용;노명일;신현경;하솔;구남국
    • 한국CDE학회논문집
    • /
    • 제18권6호
    • /
    • pp.439-450
    • /
    • 2013
  • In the case of a floating offshore structure such as FPSO(Floating, Production, Storage, and Offloading unit), many equipment should be installed in the limited space, as compared with an onshore structure. Recently, the requirement for an optimal layout method of the structure has been raised. Thus, a layout method of the floating offshore structure was proposed in this study. First, an optimization problem for layout design was mathematically formulated, and then an optimization algorithm was implemented based on the genetic algorithm in order to solve it. To evaluate the applicability of the proposed method, it was applied to examples ofFPSO topsides and an offshore wind turbine. As a result, it was shown that the proposed method can be applied to layout design of the floating offshore structure.

A comparative study of different active heave compensation approaches

  • Zinage, Shrenik;Somayajula, Abhilash
    • Ocean Systems Engineering
    • /
    • 제10권4호
    • /
    • pp.373-397
    • /
    • 2020
  • Heave compensation is a vital part of various marine and offshore operations. It is used in various applications, including the transfer of cargo between two vessels in the open ocean, installation of topsides of an offshore structure, offshore drilling and for surveillance, reconnaissance and monitoring. These applications typically involve a load suspended from a hydraulically powered winch that is connected to a vessel that is undergoing dynamic motion in the ocean environment. The goal in these applications is to design a winch controller to keep the load at a regulated height by rejecting the net heave motion of the winch arising from ship motions at sea. In this study, we analyze and compare the performance of various control algorithms in stabilizing a suspended load while the vessel is subjected to changing sea conditions. The KCS container ship is chosen as the vessel undergoing dynamic motion in the ocean. The negative of the net heave motion at the winch is provided as a reference signal to track. Various control strategies like Proportional-Derivative (PD) Control, Model Predictive Control (MPC), Linear Quadratic Integral Control (LQI), and Sliding Mode Control (SMC) are implemented and tuned for effective heave compensation. The performance of the controllers is compared with respect to heave compensation, disturbance rejection and noise attenuation.

Numerical and experimental investigation on the global performance of a novel design of a Low Motion FPSO

  • Peng, Cheng;Mansour, Alaa M.;Wu, Chunfa;Zuccolo, Ricardo;Ji, Chunqun;Greiner, Bill;Sung, Hong Gun
    • Ocean Systems Engineering
    • /
    • 제8권4호
    • /
    • pp.427-439
    • /
    • 2018
  • Floating Production Storage and Offloading (FPSO) units have the advantages of their ability to provide storage and offloading capabilities which are not available in other types of floating production systems. In addition, FPSOs also provide a large deck area and substantial topsides payload capacity. They are in use in a variety of water depths and environments around the world. It is a good solution for offshore oil and gas development in fields where there is lack of an export pipeline system to shore. However due to their inherently high motions in waves, they are limited in the types of risers they can host. The Low Motion FPSO (LM-FPSO) is a novel design that is developed to maintain the advantages of the conventional FPSOs while offering significantly lower motion responses. The LM-FPSO design generally consists of a box-shape hull with large storage capacity, a free-hanging solid ballast tank (SBT) located certain distance below the hull keel, a few groups of tendons arranged to connect the SBT to the hull, a mooring system for station keeping, and a riser system. The addition of SBT to the floater results in a significant increase in heave, roll and pitch natural periods, mainly through the mass and added mass of the SBT, which significantly reduces motions in the wave frequency range. Model tests were performed at the Korea Research Institute of Ships & Ocean Engineering (KRISO) in the fall of 2016. An analytical model of the basin model (MOM) was created in Orcaflex and calibrated against the basin-model. Good agreement is achieved between global performance results from MOM's predictions and basin model measurements. The model test measurements have further verified the superior motion response of LM-FPSO. In this paper, numerical results are presented to demonstrate the comparison and correlation of the MOM results with model test measurements. The verification of the superior motion response through model test measurements is also presented in this paper.