• Title/Summary/Keyword: Topology generation

Search Result 202, Processing Time 0.016 seconds

Modeling the Controllable Parameters of Radon Environment System with Dose Sensitivity Analysis (실내 라돈환경계의 선량감도분석에 의한 제어매개변수 모델링)

  • Zoo, Oon-Pyo;Chang, Yi-Young;Kim, Kern-Joong
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.2
    • /
    • pp.41-54
    • /
    • 1991
  • This paper aimed to analyse dose sensitivity to the controllable parameters of indoor radon $(^{222}Rn)$ and its decay products (Rn-D) by applying the input~output linear system theory. Physical behaviors of $^{222}Rn\;&\;Rn-D$ were analyzed in terms of $(^{222}Rn)$ gas -generation, -migation and -infiltration to indoor environments, and the performance output-function, i. e. mean dose equivalent to Tracho-Bronchial (TB) lung region, was assessed to the following extented ranges of the controllable paramenters; a) the ventilation rate $constant({\lambda}_v)\;:\;0{\sim}50[h^{-l}].\;b)$ the attachment rate $constant({\lambda}_a)\;:\;0{\sim}500[h^{-l}].\;c)$ the unattached-deposition rate constant (${\lambda}^u_d)\;:\;0-50[h-l]$. A linear input-output model was reconstructed from the original models in literatures, as follows, which was modified into the matrices consisting of 111 nodal equations; a) indoor $^{222}Rn\;&\;Rn-D$ Behaviour; Jacobi-Porstendoerfer-Bruno model.

  • PDF

Applying Rosen-type PZT plasma generation device for medical applications (로젠형 압전변압기를 적용한 의료융합 플라즈마기기)

  • Lee, Kang-yeon;Jung, Byung-Geun;Park, Jeong-sook;Park, Ju-Hoon;Jeong, Byeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.243-250
    • /
    • 2021
  • In the medical field, applications of plasma are applied sterilize instruments mainly but with the advent of bio-plasma technology, the scope of application is expanding. Recently, In addition, high-density miniaturization with handheld is required for sophisticated procedures when irradiated directly or treated with non-standard conditions. Rosen-type PZT is a device with a structure that generates high voltage plasma by achieving voltage transformation through electro-mechanical coupling using piezoelectric effect.and is used in portable plasma generating devices as an advantage to increase energy density relatively. In this paper, Rosen-type PZT was modeled using equivalent circuits and was carried out and a plasma generating device for medical application was designed and prototype tested. Prototype plasma generating device generates an output voltage of 5.8 kV with 12V input power and is designed to operate at high voltage by applying the half-bridge topology power converter. The results of the study confirmed the availability of various medical devices, such as plasma jets or direct exposure equipment.