• 제목/요약/키워드: Topology Design

검색결과 1,143건 처리시간 0.024초

Topology Design Optimization of Electromagnetic Vibration Energy Harvester to Maximize Output Power

  • Lee, Jaewook;Yoon, Sang Won
    • Journal of Magnetics
    • /
    • 제18권3호
    • /
    • pp.283-288
    • /
    • 2013
  • This paper presents structural topology optimization that is being applied for the design of electromagnetic vibration energy harvester. The design goal is to maximize the root-mean-square value of output voltage generated by external vibration leading structures. To calculate the output voltage, the magnetic field analysis is performed by using the finite element method, and the obtained magnetic flux linkage is interpolated by using Lagrange polynomials. To achieve the design goal, permanent magnet is designed by using topology optimization. The analytical design sensitivity is derived from the adjoint variable method, and the formulated optimization problem is solved through the method of moving asymptotes (MMA). As optimization results, the optimal location and shape of the permanent magnet are provided when the magnetization direction is fixed. In addition, the optimization results including the design of magnetization direction are provided.

위상최적설계 기법을 이용한 이중편심 버터플라이 밸브의 디스크에 대한 형상설계 (SHAPE DESIGN FOR DISC OF A DOUBLE-ECCENTRIC BUTTERFLY VALVE USING THE TOPOLOGY OPTIMIZATION TECHNIQUE)

  • 양설민;백석흠;강상모
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.61-69
    • /
    • 2012
  • In this paper, the shape design process is briefly discussed emphasizing the use of topology optimization in the conceptual design stage. The basic idea is to view feasible domains for sensitivity region concepts. In this method, the main process consists of two steps: as the design moves further inside the feasible domain using Taguchi method, and thus becoming more successful topology optimization, the sensitivity region becomes larger. In designing a double-eccentric butterfly valve, related to hydrodynamic performance and disc structure, are discussed where the use of topology optimization has proven to dramatically improve an existing design and significantly decrease the development time of a shape design. CFD analysis results demonstrate the validity of this approach.

Topology optimization for thin plate on elastic foundations by using multi-material

  • Banh, Thien Thanh;Shin, Soomi;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.177-184
    • /
    • 2018
  • This study contributes to evaluate multiphase topology optimization design of plate-like structures on elastic foundations by using classic plate theory. Multi-material optimal topology and shape are produced as an alternative to provide reasonable material assignments based on stress distributions. Multi-material topology optimization problem is solved through an alternative active-phase algorithm with Gauss-Seidel version as an optimization model of optimality criteria. Stiffness and adjoint sensitivity formulations linked to thin plate potential strain energy are derived in terms of multiphase design variables and Winkler-Pasternak parameters considering elastic foundation to apply to the current topology optimization. Numerical examples verify efficiency and diversity of the present topology optimization method of elastic thin plates depending on multiple materials and Winkler-Pasternak parameters with the same amount of volume fraction and total structural volume.

Stress-based topology optimization under buckling constraint using functionally graded materials

  • Minh-Ngoc Nguyen;Dongkyu Lee;Soomi Shin
    • Steel and Composite Structures
    • /
    • 제51권2호
    • /
    • pp.203-223
    • /
    • 2024
  • This study shows functionally graded material structural topology optimization under buckling constraints. The SIMP (Solid Isotropic Material with Penalization) material model is used and a method of moving asymptotes is also employed to update topology design variables. In this study, the quadrilateral element is applied to compute buckling load factors. Instead of artificial density properties, functionally graded materials are newly assigned to distribute optimal topology materials depending on the buckling load factors in a given design domain. Buckling load factor formulations are derived and confirmed by the resistance of functionally graded material properties. However, buckling constraints for functionally graded material topology optimization have not been dealt with in single material. Therefore, this study aims to find the minimum compliance topology optimization and the buckling load factor in designing the structures under buckling constraints and generate the functionally graded material distribution with asymmetric stiffness properties that minimize the compliance. Numerical examples verify the superiority and reliability of the present method.

열전도 문제에 대한 설계 민감도 해석과 위상 최적 설계 (Design Sensitivity Analysis and Topology Optimization of Heat Conduction Problems)

  • 김민근;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.127-134
    • /
    • 2004
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis (DSA) method applicable to heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume, respectively. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with finite difference ones, requiring less than 0.3% of CPU time far the finite differencing. Also, the topology optimization yields physical meaningful results.

  • PDF

열전도 문제에 대한 3 차원 구조물의 위상 최적설계 (Topology Design Optimization of Three Dimensional Structures for Heat Conduction Problems)

  • 문세준;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.327-334
    • /
    • 2005
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis (DSA) method applicable to 3-Dimensional heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume, respectively, Through several numerical examples, the developed DSA method is verified to yield efficiency and accurate sensitivity results compared with finite difference ones. Also, the topology optimization yields physical meaningful results.

  • PDF

신뢰성 해석을 이용한 차량 후드 보강재의 위상최적화 (Topology Optimization of the Inner Reinforcement of a Vehicle's Hood using Reliability Analysis)

  • 박재용;임민규;오영규;박재용;한석영
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.691-697
    • /
    • 2010
  • Reliability-based topology optimization (RBTO) is to get an optimal topology satisfying uncertainties of design variables. In this study, reliability-based topology optimization method is applied to the inner reinforcement of vehicle's hood based on BESO. A multi-objective topology optimization technique was implemented to obtain optimal topology of the inner reinforcement of the hood. considering the static stiffness of bending and torsion as well as natural frequency. Performance measure approach (PMA), which has probabilistic constraints that are formulated in terms of the reliability index, is adopted to evaluate the probabilistic constraints. To evaluate the obtained optimal topology by RBTO, it is compared with that of DTO of the inner reinforcement of the hood. It is found that the more suitable topology is obtained through RBTO than DTO even though the final volume of RBTO is a little bit larger than that of DTO. From the result, multiobjective optimization technique based on the BESO can be applied very effectively in topology optimization for vehicle's hood reinforcement considering the static stiffness of bending and torsion as well as natural frequency.

3D Topology Optimization of Fixed Offshore Structure and Experimental Validation

  • Kim, Hyun-Seok;Kim, Hyun-Sung;Park, Byoungjae;Lee, Kangsu
    • 한국해양공학회지
    • /
    • 제34권4호
    • /
    • pp.263-271
    • /
    • 2020
  • In this study, we performed a three-dimensional (3D) topology optimization of a fixed offshore structure to enhance its structural stiffness. The proposed topology optimization is based on the solid isotropic material with penalization (SIMP) method, where a volume constraint is applied to utilize an equivalent amount of material as that used for the rule-based scantling design. To investigate the effects of the main legs of the fixed offshore structure on its structural stiffness, the leg region is selectively considered in the design domain of the topology optimization problem. The obtained optimal designs and the rule-based scantling design of the structure are manufactured by 3D metal printing technology to experimentally validate the topology optimization. The behaviors under compressive loading of the obtained optimal designs are compared with those of the rule-based scantling design using a universal testing machine (UTM). Based on the structural experiments, we concluded that by employing the topology optimization method, the structural stiffness of the structure was enhanced compared to that of the rule-based scantling design for an equal amount of the fabrication material. Furthermore, by effectively combining the topology optimization and rule-based scantling methods, we succeeded in enhancing the structural stiffness and improving the breaking load of the fixed offshore structure.

3 차원 요소를 이용한 구조물의 위상 최적설계 (Topology Design Optimization of Structures using Solid Elements)

  • 이기명;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.309-316
    • /
    • 2005
  • In this paper, we develop continuum-based design sensitivity analysis (DSA) methods using both direct differential method (DDM) and adjoint variable method (AVM) for non-shape design problems. The developed DSA method is further utilized for the topology design optimization of 3-dimensional structures. In numerical examples, the analytical DSA results are verified using finite difference ones. The topology optimization method yields very reasonable results in physical point of view.

  • PDF

The influence of convoy loading on the optimized topology of railway bridges

  • Jansseune, Arne;De Corte, Wouter
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.45-58
    • /
    • 2017
  • This paper presents the application of topology optimization as a design tool for a steel railway bridge. The choice of a steel railway bridge is dictated by the particular situation that it is suitable for topology optimization design. On the one hand, the current manufacturing techniques for steel structures (additive manufacturing techniques not included) are highly appropriate for material optimization and weight reduction to improve the overall structural efficiency, improve production efficiency, and reduce costs. On the other hand, the design of a railway bridge, especially at higher speeds, is dominated by minimizing the deformations, this being the basic principle of compliance optimization. However, a classical strategy of topology optimization considers typically only one or a very limited number of load cases, while the design of a steel railway bridge is characterized by relatively concentrated convoy loads, which may be present or absent at any location of the structure. The paper demonstrates the applicability of considering multiple load configurations during topology optimization and proves that a different and better optimal layout is obtained than the one from the classical strategy.