• Title/Summary/Keyword: Topography

Search Result 2,539, Processing Time 0.042 seconds

Variation of Paleotopography around the Ssangsujeong Pavilion Area in Gongsanseong Fortress using GIS and 3D Geospatial Information

  • Lee, Chan Hee;Park, Jun Hyoung
    • Journal of Conservation Science
    • /
    • v.38 no.4
    • /
    • pp.347-359
    • /
    • 2022
  • Gongsanseong Fortress was registered of a World Heritage Site in 2015 as a representative cultural heritage from the Woongjin Baekje period, and it has been used throughout the entire period from Baekje Kingdom to the Joseon Dynasty. Within Gongsanseong Fortress, the area around Ssangsujeong is presumed the site of royal palace of the Woongjin Baekje. Also, the excavated culture layers of the Baekje Kingdom, the Unified Silla period, and the Joseon Dynasty were confirmed. In this study, paleotopography was modeled by digitally converting the elevation data obtained through surveying the excavation process, and the use of the topography in the Ssangsujeong area was considered by examining the variations in the topography according to the periods. As a result, the topography of the slope around the peak changed by periods, and the topography did not change on the flat land. The topography between the Baekje Kingdom and the Unified Silla period appeared to be almost identical, and it seems that the space of the Baekje period was maintained as it is. Also, during the Joseon Dynasty, it is confirmed that flat surfaces in the previous period were used. However, sediments on the slopes flowed down, reducing the area of the flatland, and architectural techniques that could utilize the natural topography of the changed slope were applied to interpret it as having a different topography from the previous period. In order to model and interpret the paleotopography, excavation data, geological and topographic analysis, and digital data must be secured. It is expected that location conditions and ancient human life can be identified if the analysis technique in the study is applied to other archaeological sites in the future.

Magnetocardiogram Topography with Automatic Artifact Correction using Principal Component Analysis and Artificial Neural Network

  • Ahn C.B.;Kim T.H.;Park H.C.;Oh S.J.
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.2
    • /
    • pp.59-63
    • /
    • 2006
  • Magnetocardiogram (MCG) topography is a useful diagnostic technique that employs multi-channel magnetocardiograms. Measurement of artifact-free MCG signals is essenctial to obtain MCG topography or map for a diagnosis of human heart. Principal component analysis (PCA) combined with an artificial neural network (ANN) is proposed to remove a pulse-type artifact in the MCG signals. The algorithm is composed of a PCA module which decomposes the obtained signal into its principal components, followed by an ANN module for the classification of the components automatically. In the experiments with volunteer subjects, 97% of the decisions that were made by the ANN were identical to those by the human experts. Using the proposed technique, the MCG topography was successfully obtained without the artifact.

A Study on the Calibration of Shape Measurement System Using Digital moire (Digital moire 형상측정 시스템의 보정에 관한 연구)

  • 유원재;김도훈;안재웅;강영준;노형민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.199-202
    • /
    • 2002
  • Moire topography method is a well-known non-contacting 3-D measurement method. Recently, the automatic 3-D measurement by moire topography has been required since the method was frequently applied to the engineering and medical fields. 3-D measurement using digital projection moire topography is very attractive because of its high measuring speed and high sensitivity. In this paper, using different N-bucket algorithm method of digital projection moire topography is tested to measuring object with the 2$\pi$-ambiguity problem. Experimental results prove that the proposed scheme is capable of finding measurement errors that decreased more by using the flour-three step algorithm method than the same step in the phase shifting of different pitchs.

  • PDF

Topography in intertidal zone by satellite images

  • Kang, Yong-Q.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.664-669
    • /
    • 2002
  • Intertidal zone (tidal flat) is a place which is sometimes dry and sometimes wet depending on the tidal rhythm. Direct measurement of topography in the intertidal zone is very difficult to be achieved. The interface between wet and dry parts in the tidal flat, which can be identified from near infrared band of satellite image, is a 'depth contour' which corresponds to the sea level at the time of satellite pass. Aquisition of topography data in tidal flat is possible by combining various techniques such as (1) identification of the interface between wet and dry parts, (2) GCP correction of satellite image, and (3) realtime prediction of sea level elevation at the time of satellite pass. The algorithm was successfully applied in obtaining topography (bathymetry) data in the intertidal zone of Asan Bay in the west coast of Korea from 26 satellite images. The method is expected to be very efficient in making bathymetry data base in the western and southern parts of Korea where tidal flats are well developed in wide regions.

  • PDF

Analysis of Effects on Topography for P-V System (태양광입지선정을 위한 지형분석방법 소개 및 영향분석)

  • Kim, Young-Deug;Ahn, In-Soo;Kim, Min-Su;Chang, Jeong-Ho;Chang, Moon-Soung
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.3-9
    • /
    • 2008
  • In design PV (photovoltaic) system, there are many important factors to consider for best site selection. It is essential to understand to know the amount of sunlight available and how to minimize the shadings. This study presents basic concepts for understanding sun's position and insolation. also it gives easy tools for topography analysis. Finally, this study shows some theoretical calculations of power generation losses by topographic obstacle's elevations and disadvantages in economic feasibility, that is about 7million won loss per year for case of 10 degree topography elevation with assuming average Korea's topography elevation as 5 degree.

  • PDF

Application of Fractal Demension for Topography Analysis of Frictional Surface of Case Hardened Steel (표면경화강의 마찰면 형상특징 해석을 위한 프렉탈 차원의 적용)

  • Cho, Yon-Sang;Ok, Chul-Ho;Park, Heung-Sik;Jun, Tae-Ok
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.755-759
    • /
    • 2000
  • The determination of surface topography is believed to be extremely important in the areas of contact mechanics, adhesion and friction. In order to describe topography of various frictional surface. the wear test was carried out under different experimental conditions in dry friction. And fractal descriptors was applied to frictional surface of laser modified steel with image processing System. These descriptors to analyze surface structure are fractal dimension. Surface fractal dimension can be determined by sum of intensity difference of surface pixel. Topography of frictional surface can be effectively obtained by fractal dimensions.

  • PDF

Numerical Study on Atmospheric Flow Variation Associated With the Resolution of Topography (지형자료 해상도에 따른 대기 유동장 변화에 관한 수치 연구)

  • Lee, Soon-Hwan;Kim, Sun-Hee;Ryu, Chan-Su
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1141-1154
    • /
    • 2006
  • Orographic effect is one of the important factors to induce Local circulations and to make atmospheric turbulence, so it is necessary to use the exact topographic data for prediction of local circulations. In order to clarify the sensitivity of the spatial resolution of topography data, numerical simulations using several topography data with different spatial resolution are carried out under stable and unstable synoptic conditions. The results are as follows: 1) Influence of topographic data resolution on local circulation tends to be stronger at simulation with fine grid than that with coarse grid. 2) The hight of mountains in numerical model become mote reasonable with high resolution topographic data, so the orographic effect is also emphasized and clarified when the topographic data resolution is higher. 2) The higher the topographic resolution is, the stronger the mountain effect is. When used topographic data resolution become fine, topography in numerical model becomes closer to real topography. 3) The topographic effect tends to be stronger when atmospheric stability is strong stable. 4) Although spatial resolution of topographic data is not fundamental factor for dramatic improvement of weather prediction accuracy, some influence on small scale circulation can be recognized, especially in fluid dynamic simulation.

A Study on the Calibration of Shape Measurement System Using Digital moire (Digital moire 형상측정 시스템의 보정에 관한 연구)

  • 김도훈;유원재;박낙규;강영준
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.255-259
    • /
    • 2003
  • Moire topography method isa well-known non-contacting 3-D measurement method as afast non-contact test for three-dimension shape measuring method. Recently, it's important to study the automatic three-dimension measurement by moire topography because it is frequently applied to the reverse engineering , the medical , the entertainment fields. Three-dimension measurement using projection of moire topography is very attractive because of its high measuring speed and high sensitivity. In this paper, the classical moire method is computerized-so called digital moire when a virtual grating pattern is projected on a surface, the captured image by the CCD camera has three-dimension information of the objects. The moire image can be obtained through a simple image processing and a reference grating pattern. and it provides similar results without physical grating pattern. digital projection moire topography turn out to be very effective for the three-dimension measurement of objects. Using different N-bucket algorithm method of digital projection moire topography is tested to measuring object with the 2-ambiguity problem. Experimental results prove that the proposed scheme is capable of finding measurement errors that decreased more by using the four-three step algorithm method instead of the same step in the phase shifting of different pitch.

  • PDF

3-D Reconstruction of Human Face Using the Derivative Moiré Topography

  • Bae, Yoon Jae;Ha, Byeong Wan;Park, Ji An;Cho, Choon Sik
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.500-506
    • /
    • 2014
  • A new 3-D reconstruction algorithm for the human face is proposed using the derivative Moir$\acute{e}$ topography which ensures fast and robust reconstruction even for rough surfaces. The Moir$\acute{e}$ interference fringe pattern is initially obtained through the projection Moir$\acute{e}$ topography based on phase shifting, and then differentiated to provide a full unwrapped phase map for a human face. $2{\pi}$ ambiguity, which has been a chronically unsolved problem with Moir$\acute{e}$ topography, is successfully surmounted by differentiating the Moir$\acute{e}$ fringe patterns both in x- and y-directions when the object is located in the x-y plane. A real human face is used for verifying the proposed derivative Moir$\acute{e}$ topography. A human face of 4 different phase-shifted images taken in the fixed plane is almost fully reconstructed in 3-D format in 0.1 mm lateral resolution.

A Study on Crashworthiness Optimization of Front Side Members using Bead Shape Optimization (비드 형상 최적화를 이용한 전방 측면 부재의 충돌 최적화 연구)

  • Lee, Jun-Young;Lee, Jung-Suk;Lee, Yong-Hoon;Bae, Bok-Soo;Kim, Kyu-Hak;Yim, Hong-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.331-337
    • /
    • 2012
  • In this study, the front side member is optimized using a topography optimization technique. Optimization of a simple beam is conducted before optimization of the front side member. The objective function is set to minimize the first buckling factor in the longitudinal direction. The design variable corresponds to the perturbation of nodes normal to the shell's mid-plane space. The crash analysis is conducted on a simple beam, which is optimized by Response Surface Method and the topography optimization technique. In order to verify the topography optimization technique, the results of the RSM and topography optimization model are compared. Consequently, we confirm the satisfactory performance of the topography optimization technique, and apply this topography optimization to the front side member. Thus, the front side member is optimized and its crashworthiness is increased.