• 제목/요약/키워드: Topographic change

Search Result 221, Processing Time 0.02 seconds

Analysis on the Effects of Building Coverage Ratio and Floor Space Index on Urban Climate (도시의 건폐율 및 용적률이 도시기후에 미치는 영향 분석)

  • Yeo, In-Ae;Yee, Jurng-Jae;Yoon, Seong-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.19-27
    • /
    • 2009
  • In this study, Urban Climate Simulation was performed by 3-Dimensional Urban Canopy Model. The characteristics of urban climate were analyzed combining artificial land coverage, building size, heat production from the air conditioning and topographic conditions as physical variables which affects urban climate characteristics. The results are as follows. (1) The aspects of the urban climatal change is derived to be related to the combination of the building coverage ratio, building height and shading area. According to the building height, the highest temperature was increased by $2.1^{\circ}C$ from 2-story to 5-story building and the absolute humidity by 2.1g/kg maximum and the wind velocity by 1.0m/s was decreased from 2-story to 20-story building. (2) Whole heat generation was influenced by the convective sensible heat at the lower building height and by the artificial heat generation at the higher one over 20-story building influence to some extent of the building coverage ratio. The effect of the altitude is not more considerable than the other variables as below $1^{\circ}C$ of the air temperature. In the last, deriving the combination of building coverage and building height is needed to obtain effectiveness of the urban built environment planning at the point of the urban climate. These simulation results need to be constructed as DB which shows urban quantitative thermal characters by the urban physical structure. These can be quantitative base for suggesting combinations of the building and urban planning features at the point of the desirable urban thermal environment as well as analyzing urban climate phenomenon.

Near Future Projection of Extreme Temperature over CORDEX-East Asia Phase 2 Region Using the WRF Model Based on RCP Scenarios (RCP 시나리오 기반 WRF를 이용한 CORDEX-동아시아 2단계 지역의 가까운 미래 극한기온 변화 전망)

  • Seo, Ga-Yeong;Choi, Yeon-Woo;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.585-597
    • /
    • 2019
  • This study evaluates the performance of Weather Research and Forecasting (WRF) model in simulating temperature over the COordinated Regional climate Downscaling EXperiment-East Asia (CORDEX-EA) Phase 2 domain for the reference period (1981~2005), and assesses the changes in temperature and its extremes in the mid-21st century (2026~2050) under global warming based on Representative Concentration Pathway (RCP) scenarios. MPI-ESM-LR forced by two RCP scenarios (RCP2.6 and RCP8.5) is used as initial and lateral boundary conditions. Overall, WRF can capture the observed features of temperature distribution reflecting local topographic characteristic, despite some disagreement between the observed and simulated patterns. Basically, WRF shows a systematic cold bias in daily mean, minimum and maximum temperature over the entire domain. According to the future projections, summer and winter mean temperatures over East Asia will significantly increase in the mid-21st century. The mean temperature rise is expected to be greater in winter than in summer. In accordance with these results, summer (winter) is projected to begin earlier (later) in the future compared to the historical period. Furthermore, a rise in extreme temperatures shows a tendency to be greater in the future. The averages of daily minimum and maximum temperatures above 90 percentiles are likely to be intensified in the high-latitude, while hot days and hot nights tend to be more frequent in the low-latitude in the mid-21st century. Especially, East Asia would be suffered from strong increases in nocturnal temperature under future global warming.

A Study on the Environment Change of Tidal Flat in the Cheonsu Bay Using Remotely Sensed Data (원격탐사 자료를 이용한 천수만 간석지 환경변화에 관한 연구)

  • Jang, Dong-Ho;Chi, Kwang-Hoon;Lee, Hyoun-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.1
    • /
    • pp.51-66
    • /
    • 2002
  • The purpose of this study is to analyze the geomorphological environment changes of tidal flat in the Cheonsu Bay. Especially, it centers on the changes in the sedimentary environment using remote sensing data. Multi-temporal Landsat data and topographic maps were used in this study. The results are summarized as follows: the tidal flat of Cheonsu Bay changes in many ways depending on the direction of the tidal current. In the neighborhood of Ganwoldo, the scale of the tidal flat has continuously been expanded due to the superiority of sedimentation after a tide embankment was built. When we analyzed the grain size of sediments and implemented in-situ field survey, it was found that the innermost part of the bay consists of a mud flat, with the midway part mixed flat, and the nearest part to the sea sand flat. On the other hand, in the neighborhood of Seomot isle and its beach, sedimentation is superior in the eastern part whereas erosion is superior in the western part. In other words, the western coast of the beach is contacted with the open seas and under much influence of ocean wave. The eastern coast is placed at the entrance of the bay and has sand bar and tidal flat developed due to submarine deposits that are accumulated on the sea floor by the tidal current. In conclusions, remote sensing methods can be effectively applied for quantitative analysis of geomorphological changes in tidal flat, and it is expected that the proposed schemes can be applied to another geomorphological environments such as beach, sand dune, and sand wave.

A Method of DTM Generation from KOMPSAT-3A Stereo Images using Low-resolution Terrain Data (저해상도 지형 자료를 활용한 KOMPSAT-3A 스테레오 영상 기반의 DTM 생성 방법)

  • Ahn, Heeran;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.715-726
    • /
    • 2019
  • With the increasing prevalence of high-resolution satellite images, the need for technology to generate accurate 3D information from the satellite images is emphasized. In order to create a digital terrain model (DTM) that is widely used in applications such as change detection and object extraction, it is necessary to extract trees, buildings, etc. that exist in the digital surface model (DSM) and estimate the height of the ground. This paper presents a method for automatically generating DTM from DSM extracted from KOMPSAT-3A stereo images. The technique was developed to detect the non-ground area and estimate the height value of the ground by using the previously constructed low-resolution topographic data. The average vertical accuracy of DTMs generated in the four experimental sites with various topographical characteristics, such as mountainous terrain, densely built area, flat topography, and complex terrain was about 5.8 meters. The proposed technique would be useful to produce high-quality DTMs that represent precise features of the bare-earth's surface.

Analysis of Ecodiversity as the Foundation for Conserving Biodiversity and Its Restoration Strategy (생물다양성을 보존하기 위한 토대로서 생태다양성 분석 및 복원 전략)

  • Lim, Bong Soon;Kim, Dong Uk;Kim, A Reum;Seol, Jae Won;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.4
    • /
    • pp.408-426
    • /
    • 2020
  • This study aims to establish the national strategy for biodiversity conservation by analyzing the current status of ecodiversity as the foundation of biodiversity conservation. Furthermore, this study has another purpose of preparing the measures for conservation and restoration of biodiversity. Ecodiversity was discussed as the basis for conserving biodiversity. Five climate zones and 14 climatic regions, eight plant geographic regions, three massifs and major geologic series, horizontal and vertical topographic conditions, 16 ecoregions, major ecosystems including forest, river and streams, wetlands, coast and marine, agriculture, and urban esosystems, and land use types were discussed as the element of the ecodiversity. In terms of biodiversity conservation, the actual conditions of each ecological unit were reviewed and measures were proposed to reduce biodiversity loss. Destruction and fragmentation of habitat, poor ecosystem management due to socioeconomic changes, the effects of exotic species and chemicals, and climate change were discussed as the major factors causing biodiversity loss. Systematic monitoring based on scientific principles and ecological restoration based on those monitoring results were recommended as measures for biodiversity conservation.

Variation of Paleotopography around the Ssangsujeong Pavilion Area in Gongsanseong Fortress using GIS and 3D Geospatial Information

  • Lee, Chan Hee;Park, Jun Hyoung
    • Journal of Conservation Science
    • /
    • v.38 no.4
    • /
    • pp.347-359
    • /
    • 2022
  • Gongsanseong Fortress was registered of a World Heritage Site in 2015 as a representative cultural heritage from the Woongjin Baekje period, and it has been used throughout the entire period from Baekje Kingdom to the Joseon Dynasty. Within Gongsanseong Fortress, the area around Ssangsujeong is presumed the site of royal palace of the Woongjin Baekje. Also, the excavated culture layers of the Baekje Kingdom, the Unified Silla period, and the Joseon Dynasty were confirmed. In this study, paleotopography was modeled by digitally converting the elevation data obtained through surveying the excavation process, and the use of the topography in the Ssangsujeong area was considered by examining the variations in the topography according to the periods. As a result, the topography of the slope around the peak changed by periods, and the topography did not change on the flat land. The topography between the Baekje Kingdom and the Unified Silla period appeared to be almost identical, and it seems that the space of the Baekje period was maintained as it is. Also, during the Joseon Dynasty, it is confirmed that flat surfaces in the previous period were used. However, sediments on the slopes flowed down, reducing the area of the flatland, and architectural techniques that could utilize the natural topography of the changed slope were applied to interpret it as having a different topography from the previous period. In order to model and interpret the paleotopography, excavation data, geological and topographic analysis, and digital data must be secured. It is expected that location conditions and ancient human life can be identified if the analysis technique in the study is applied to other archaeological sites in the future.

Development of flood hazard and risk maps in Bosnia and Herzegovina, key study of the Zujevina River

  • Emina, Hadzic;Giuseppe Tito, Aronica;Hata, Milisic;Suvada, Suvalija;Slobodanka, Kljucanin;Ammar, Saric;Suada, Sulejmanovic;Fehad, Mujic
    • Coupled systems mechanics
    • /
    • v.11 no.6
    • /
    • pp.505-524
    • /
    • 2022
  • Floods represent extreme hydrological phenomena that affect populations, environment, social, political, and ecological systems. After the catastrophic floods that have hit Europe and the World in recent decades, the flood problem has become more current. At the EU level, a legal framework has been put in place with the entry into force of Directive 2007/60/EC on Flood Risk Assessment and Management (Flood Directive). Two years after the entry into force of the Floods Directive, Bosnia and Herzegovina (B&H), has adopted a Regulation on the types and content of water protection plans, which takes key steps and activities under the Floods Directive. The "Methodology for developing flood hazard and risk maps" (Methodology) was developed for the territory of Bosnia and Herzegovina, following the methodology used in the majority of EU member states, but with certain modifications to the country's characteristics. Accordingly, activities for the preparation of the Preliminary Flood Risk Assessment for each river basin district were completed in 2015 for the territory of Bosnia and Herzegovina. Activities on the production of hazard maps and flood risk maps are in progress. The results of probable climate change impact model forecasts should be included in the preparation of the Flood Risk Management Plans, which is the subsequent phase of implementing the Flood Directive. By the foregoing, the paper will give an example of the development of the hydrodynamic model of the Zujevina River, as well as the development of hazard and risk maps. Hazard and risk maps have been prepared for medium probability floods of 1/100 as well as for high probability floods of 1/20. The results of LiDAR (Light Detection and Ranging) recording were used to create a digital terrain model (DMR). It was noticed that there are big differences between the flood maps obtained by recording LiDAR techniques in relation to the previous flood maps obtained using georeferenced topographic maps. Particular attention is given to explaining the Methodology applied in Bosnia and Herzegovina.

Evaluation of the Importance of Variables When Using a Random Forest Technique to Assess Landslide Damage: Focusing on Chungju Landslides (Random Forest를 활용한 산사태 피해 영향인자 평가: 충주시 산사태를 중심으로)

  • Jaeho Lee;Youjin Jeong;Junghae Choi
    • The Journal of Engineering Geology
    • /
    • v.34 no.1
    • /
    • pp.51-65
    • /
    • 2024
  • Landslides are natural disasters that causes significant property damage worldwide every year. In Korea, damage due to landslides is increasing owing to the effects of climate change, and it is important to identify the factors that increase the prevalence of landslides in order to reduce the damage they cause. Therefore, this study used a random forest model to analyze the importance of 14 factors in influencing landslide damage in a specific area of Chungju, Chungcheongbuk-do province, Korea. The random forest model performed accurately with an AUC of 0.87 and the most-important factors were ranked in the order of aspect, slope, distance to valley, and elevation, suggesting that topographic factors such as aspect and slope more greatly influence landslide damage than geological or soil factors such as rock type and soil thickness. The results of this study are expected to provide a basis for mapping and predicting landslide damage, and for research focused on reducing landslide damage.

Quantitative Approach of Soil Prediction using Environment Factors in Jeju Island (환경요인을 이용한 제주도 토양예측의 정량적 연구)

  • Moon, Kyung-Hwan;Seo, Hyeong-Ho;Sonn, Yeon-Kyu;Song, Kwan-Chul;Hyun, Hae-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.360-369
    • /
    • 2012
  • Parent material, climate, topography, biological factors, and time are considered five soil forming factors. This study was conducted to elucidate the effects of several environment factors on soil distribution using quantitative analysis method, called soil series estimation algorithm in the soils of Jeju Island. We selected environment factors including mean temperature, annual precipitation, surface geology, altitude, slope, aspect, altitude difference within 1 $km^2$ area, topographic wetness index, distance from the shore, distance from the mountain peak, and landuse for a quantitative analysis. We analyzed the ranges of environment factors for each soil series and calculated probabilities of possible-soil series for certain locations using estimation algorithm. The algorithm can predicted exact soil series on the soil map with correctness of 33% on $1^{st}$ ranking, 62% within $2^{nd}$ ranking, 74% within $5^{th}$ ranking after estimating using randomly extracted environment factors. In predicted soil map, soil sequences of Entisols-Alfisols-Andisols on northern area and Alfisols-Ultisols-Andisols on western area can be suggested along increasing altitude. More modeling studies will be needed for the genesis process of soils in Jeju Island.

Predictive Flooded Area Susceptibility and Verification Using GIS and Frequency Ratio (빈도비 모델과 GIS을 이용한 침수 취약 지역 예측 기법 개발 및 검증)

  • Lee, Moung-Jin;Kang, Jung-Eun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.2
    • /
    • pp.86-102
    • /
    • 2012
  • For predictive flooded area susceptibility mapping, this study applied and verified probability model and the frequency ratio using a geographic information system (GIS) and frequency raio. Flooded areas were identified in the study area of field surveys, For predictive flooded area susceptibility mapping, this study applied and verified probability model and the frequency ratio using a geographic information system (GIS) and frequency raio. Flooded areas were identified in the study area of field surveys, and maps of the topography, geology, landcover and green infrastructure were constructed for a spatial database. The factors that influence flooded areas occurrence, such as slope gradient, slope, aspect and curvature of topography and distance from darinage, were calculated from the topographic database. Lithology and distance from fault were extracted and calculated from the geology database. The frequency ratio coefficient is overlaid for flooded areas susceptibility mapping as each factor's ratings. Then the flooded areas susceptibility map was verified and compared using the existing flooded areas. As the verification results, the frequency ratio model showed 82% in prediction accuracy. The method can be used to reduce hazards associated with flooded areas and to plan land use.