• Title/Summary/Keyword: Topics Modeling analysis

Search Result 451, Processing Time 0.086 seconds

Topic Model Analysis of Research Themes and Trends in the Journal of Economic and Environmental Geology (기계학습 기반 토픽모델링을 이용한 학술지 "자원환경지질"의 연구주제 분류 및 연구동향 분석)

  • Kim, Taeyong;Park, Hyemin;Heo, Junyong;Yang, Minjune
    • Economic and Environmental Geology
    • /
    • v.54 no.3
    • /
    • pp.353-364
    • /
    • 2021
  • Since the mid-twentieth century, geology has gradually evolved as an interdisciplinary context in South Korea. The journal of Economic and Environmental Geology (EEG) has a long history of over 52 years and published interdisciplinary articles based on geology. In this study, we performed a literature review using topic modeling based on Latent Dirichlet Allocation (LDA), an unsupervised machine learning model, to identify geological topics, historical trends (classic topics and emerging topics), and association by analyzing titles, keywords, and abstracts of 2,571 publications in EEG during 1968-2020. The results showed that 8 topics ('petrology and geochemistry', 'hydrology and hydrogeology', 'economic geology', 'volcanology', 'soil contaminant and remediation', 'general and structural geology', 'geophysics and geophysical exploration', and 'clay mineral') were identified in the EEG. Before 1994, classic topics ('economic geology', 'volcanology', and 'general and structure geology') were dominant research trends. After 1994, emerging topics ('hydrology and hydrogeology', 'soil contaminant and remediation', 'clay mineral') have arisen, and its portion has gradually increased. The result of association analysis showed that EEG tends to be more comprehensive based on 'economic geology'. Our results provide understanding of how geological research topics branch out and merge with other fields using a useful literature review tool for geological research in South Korea.

Big Data Analysis of Busan Civil Affairs Using the LDA Topic Modeling Technique (LDA 토픽모델링 기법을 활용한 부산시 민원 빅데이터 분석)

  • Park, Ju-Seop;Lee, Sae-Mi
    • Informatization Policy
    • /
    • v.27 no.2
    • /
    • pp.66-83
    • /
    • 2020
  • Local issues that occur in cities typically garner great attention from the public. While local governments strive to resolve these issues, it is often difficult to effectively eliminate them all, which leads to complaints. In tackling these issues, it is imperative for local governments to use big data to identify the nature of complaints, and proactively provide solutions. This study applies the LDA topic modeling technique to research and analyze trends and patterns in complaints filed online. To this end, 9,625 cases of online complaints submitted to the city of Busan from 2015 to 2017 were analyzed, and 20 topics were identified. From these topics, key topics were singled out, and through analysis of quarterly weighting trends, four "hot" topics(Bus stops, Taxi drivers, Praises, and Administrative handling) and four "cold" topics(CCTV installation, Bus routes, Park facilities including parking, and Festivities issues) were highlighted. The study conducted big data analysis for the identification of trends and patterns in civil affairs and makes an academic impact by encouraging follow-up research. Moreover, the text mining technique used for complaint analysis can be used for other projects requiring big data processing.

Using topic modeling-based network visualization and generative AI in online discussions, how learners' perception of usability affects their reflection on feedback

  • Mingyeong JANG;Hyeonwoo LEE
    • Educational Technology International
    • /
    • v.25 no.1
    • /
    • pp.1-25
    • /
    • 2024
  • This study aims to analyze the impact of learners' usability perceptions of topic modeling-based visual feedback and generative AI interpretation on reflection levels in online discussions. To achieve this, we asked 17 students in the Department of Korean language education to conduct an online discussion. Text data generated from online discussions were analyzed using LDA topic modeling to extract five clusters of related words, or topics. These topics were then visualized in a network format, and interpretive feedback was constructed through generative AI. The feedback was presented on a website and rated highly for usability, with learners valuing its information usefulness. Furthermore, an analysis using the non-parametric Mann-Whitney U test based on levels of usability perception revealed that the group with higher perceived usability demonstrated higher levels of reflection. This suggests that well-designed and user-friendly visual feedback can significantly promote deeper reflection and engagement in online discussions. The integration of topic modeling and generative AI can enhance visual feedback in online discussions, reinforcing the efficacy of such feedback in learning. The research highlights the educational significance of these design strategies and clears a path for innovation.

A Study on Analysis of National Petition Data for Deriving Current Issues in Education (교육관련 이슈 도출을 위한 국민청원 데이터 분석 연구)

  • Min, Jeongwon;Shim, Jaekwoun
    • Journal of Creative Information Culture
    • /
    • v.6 no.2
    • /
    • pp.57-64
    • /
    • 2020
  • As the information society gradually advances, various opinions overflow and their complexity increases. As the results, it was made more difficult to derive important issues and properly respond to those problems. Accordingly, it is necessary to get a handle on emerging problems in education in addition to existing discourses and issues. This study aimed at examining the issues of education by analyzing the petitions posted under 'parenting and education' category on National Petition board. In order to offer objective and detailed results, we employed the topic modeling based LDA algorithm, which is an effective method to extract topics in multiple documents. Nine topics were derived as the result of the analysis and the relationship among those topics was visualized. The values of this study exist in that the derived topics represent important issues that reflect the public opinions.

Reviews Analysis of Korean Clinics Using LDA Topic Modeling (토픽 모델링을 활용한 한의원 리뷰 분석과 마케팅 제언)

  • Kim, Cho-Myong;Jo, A-Ram;Kim, Yang-Kyun
    • The Journal of Korean Medicine
    • /
    • v.43 no.1
    • /
    • pp.73-86
    • /
    • 2022
  • Objectives: In the health care industry, the influence of online reviews is growing. As medical services are provided mainly by providers, those services have been managed by hospitals and clinics. However, direct promotions of medical services by providers are legally forbidden. Due to this reason, consumers, like patients and clients, search a lot of reviews on the Internet to get any information about hospitals, treatments, prices, etc. It can be determined that online reviews indicate the quality of hospitals, and that analysis should be done for sustainable hospital marketing. Method: Using a Python-based crawler, we collected reviews, written by real patients, who had experienced Korean medicine, about more than 14,000 reviews. To extract the most representative words, reviews were divided by positive and negative; after that reviews were pre-processed to get only nouns and adjectives to get TF(Term Frequency), DF(Document Frequency), and TF-IDF(Term Frequency - Inverse Document Frequency). Finally, to get some topics about reviews, aggregations of extracted words were analyzed by using LDA(Latent Dirichlet Allocation) methods. To avoid overlap, the number of topics is set by Davis visualization. Results and Conclusions: 6 and 3 topics extracted in each positive/negative review, analyzed by LDA Topic Model. The main factors, consisting of topics were 1) Response to patients and customers. 2) Customized treatment (consultation) and management. 3) Hospital/Clinic's environments.

Analysis of Consulting Research Trends Using Topic Modeling (토픽 모델링을 활용한 컨설팅 연구동향 분석)

  • Kim, Min Kwan;Lee, Yong;Han, Chang Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.46-54
    • /
    • 2017
  • 'Consulting', which is the main research topic of the knowledge service industry, is a field of study that is essential for the growth and development of companies and proliferation to specialized fields. However, it is difficult to grasp the current status of international research related to consulting, mainly on which topics are being studied, and what are the latest research topics. The purpose of this study is to analyze the research trends of academic research related to 'consulting' by applying quantitative analysis such as topic modeling and statistic analysis. In this study, we collected statistical data related to consulting in the Scopus DB of Elsevier, which is a representative academic database, and conducted a quantitative analysis on 15,888 documents. We scientifically analyzed the research trends related to consulting based on the bibliographic data of academic research published all over the world. Specifically, the trends of the number of articles published in the major countries including Korea, the author key word trend, and the research topic trend were compared by country and year. This study is significant in that it presents the result of quantitative analysis based on bibliographic data in the academic DB in order to scientifically analyze the trend of academic research related to consulting. Especially, it is meaningful that the traditional frequency-based quantitative bibliographic analysis method and the text mining (topic modeling) technique are used together and analyzed. The results of this study can be used as a tool to guide the direction of research in consulting field. It is expected that it will help to predict the promising field, changes and trends of consulting industry related research through the trend analysis.

SOME RECENT TOPICS IN COMPUTATIONAL MATHEMATICS - FINITE ELEMENT METHODS

  • Park, Eun-Jae
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.127-137
    • /
    • 2005
  • The objective of numerical analysis is to devise and analyze efficient algorithms or numerical methods for equations arising in mathematical modeling for science and engineering. In this article, we present some recent topics in computational mathematics, specially in the finite element method and overview the development of the mixed finite element method in the context of second order elliptic and parabolic problems. Multiscale methods such as MsFEM, HMM, and VMsM are included.

  • PDF

A Study on the Trends of Construction Safety Accident in Unstructured Text Using Topic Modeling (비정형 텍스트 기반의 토픽 모델링을 이용한 건설 안전사고 동향 분석)

  • Lee, Sang-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.176-182
    • /
    • 2018
  • In order to understand and track the trends of construction safety accident, this study shows the topic trends in the construction safety accident with LDA(Latent Dirichlet Allocation)-based topic modeling method for data analytics. Especially, it performs to figure out the main issue of construction safety accident with unstructured data analysis based on the topic modeling rather than a variety of structured data analysis for preventing to safety accident in construction industry. To apply this methodology, I randomly collected to 540 news article data about construction accident from January 2017 to February 2018. Based on the unstructured data with the LDA-based topic modeling, I found the 10 topics and identified key issues through 10 keyword in each 10 topics. I forecasted the topic issue related to construction safety accident based on analysis of time-series trends about the news data from January 2017 to February 2018. With this method, this research gives a hint about ways of using unstructured news article data to anticipate safety policy and research field and to respond to construction accident safety issues in the future.

An Exploratory Research Trends Analysis in Journal of the Korea Contents Association using Topic Modeling (토픽 모델링을 활용한 한국콘텐츠학회 논문지 연구 동향 탐색)

  • Seok, Hye-Eun;Kim, Soo-Young;Lee, Yeon-Su;Cho, Hyun-Young;Lee, Soo-Kyoung;Kim, Kyoung-Hwa
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.95-106
    • /
    • 2021
  • The purpose of this study is to derive major topics in content R&D and provide directions for academic development by exploring research trends over the past 20 years using topic modeling targeting 9,858 papers published in the Journal of the Korean Contents Association. To secure the reliability and validity of the extracted topics, not only the quantitative evaluation technique but also the qualitative technique were applied step-by-step and repeated until a corpus of the level agreed upon by the researchers was generated, and detailed analysis procedures were presented accordingly. As a result of the analysis, 8 core topics were extracted. This shows that the Korean Contents Association is publishing convergence and complex research papers in various fields without limiting to a specific academic field. Also, before 2012, the proportion of topics in the field of engineering and technology appeared relatively high, while after 2012, the proportion of topics in the field of social sciences appeared relatively high. Specifically, the topic of 'social welfare' showed a fourfold increase in the second half compared to the first half. Through topic-specific trend analysis, we focused on the turning point in time at which the inflection point of the trend line appeared, explored the external variables that affected the research trend of the topic, and identified the relationship between the topic and the external variable. It is hoped that the results of this study can provide implications for active discussions in domestic content-related R&D and industrial fields.

Curriculum Relevance Analysis of Physics Book Report Text Using Topic Modeling (토픽모델링을 활용한 물리학 독서감상문 텍스트의 교육과정 연계성 분석)

  • Lim, Jeong-Hoon
    • Journal of Korean Library and Information Science Society
    • /
    • v.53 no.2
    • /
    • pp.333-353
    • /
    • 2022
  • This study analyzed the relevance of the curriculum by applying topic modeling to book reports written as content area reading activities in the 'physics' class. In order to carry out the research, 332 physics book reports were collected to analyze the relevance among keywords and topics were extracted using STM. The result of the analysis showed that the main keywords of the physics book reports were 'thought', 'content', 'explain', 'theory', 'person', 'understanding'. To examine the influence and connection relationship of the derived keywords, the study presented degree centrality, between centrality, and eigenvetor centrality. As a result of the topic modeling analysis, eleven topics related to the physics curriculum were extracted, and the curriculum linkage could be drawn in three subjects (Physics I, Physics II, Science History), and six areas (force and motion, modern physics, wave, heat and energy, Western science history, and What is science). The analyzed results can be used as evidence for a more systematic implementation of content area reading activities which reflect the subject characteristics in the future.