• 제목/요약/키워드: Topical drug delivery

검색결과 41건 처리시간 0.024초

Treatment of an Atrophic Scar with Fractional Carbon Dioxide Laser-assisted Poly-L-lactic Acid Delivery

  • Kim, Wan Jin;Jung, Ha Rin;Lee, Sang Ju;Cho, Han Kyoung
    • Medical Lasers
    • /
    • 제10권3호
    • /
    • pp.181-184
    • /
    • 2021
  • Scars can cause great psychological stress among patients. Currently, there are numerous topical agents, laser and surgical treatments available for skin rejuvenation and scar minimization. Laser-assisted drug delivery (LADD) is a treatment method that increases drug delivery by stimulating the skin physically and chemically to enhance the penetration of topical agents. This is one of the areas of great interest in the treatment of various skin diseases in addition to its use for cosmetic purposes. In particular, LADD is relatively non-invasive and has advantages in terms of accessibility and stability. Poly-L-lactic acid (PLLA) is a collagen stimulator known to gradually restore skin volume by inducing inflammation and fibroplasia. Herein, we report a case of treatment of an atrophic scar with fractional carbon dioxide laser-assisted PLLA delivery.

Lipid nanodispersion for parenteral drug delivery: in vitro characterization

  • Lee, Jung-Min;Choi, Sung-Up;Lee, Byoung-Moo;Lee, Sung-Jae;Choi, Young-Wook
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.295.2-295.2
    • /
    • 2003
  • Lipid nanodispersion (LN) composed of biocompatible lipids and surfactants is an alternative parenteral drug delivery system especially for lipophilic drugs. It has been studied for versatile applications such as oral, parenteral, topical, ocular, vaccine, and peptide drug delivery. The purpose of this study was to produce a novel LN system for intravenous injection using the high pressure homogenization. (omitted)

  • PDF

Development of Bio-ballistic Device for Laser Ablation-induced Drug Delivery

  • Choi, Ji-Hee;Gojani, Ardian B.;Lee, Hyun-Hee;Jeung, In-Seuk;Yoh, Jack J.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.68-71
    • /
    • 2008
  • Transdermal and topical drug delivery with minimal tissue damage has been an area of vigorous research for a number of years. Our research team has initiated the development of an effective method for delivering drug particles across the skin (transdermal) for systemic circulation, and to localized (topical) areas. The device consists of a micro particle acceleration system based on laser ablation that can be integrated with endoscopic surgical techniques. A layer of micro particles is deposited on the surface of a thin metal foil. The rear side of the foil is irradiated with a laser beam, which generates a shockwave that travels through the foil. When the shockwave reaches the end of the foil, it is reflected as an expansion wave and causes instantaneous deformation of the foil in the opposite direction. Due to this sudden deformation, the microparticles are ejected from the foil at very high speeds, and therefore have sufficient momentum to penetrate soft body tissues. We have demonstrated this by successfully delivering cobalt particles $3\;{\mu}m$ in diameter into gelatin models that represent soft tissue with remarkable penetration depth.

충격파를 이용한 레이저 어블레이션 기반의 마이크로 입자 가속 시스템 개발 및 약물전달 응용 (Development of shock wave induced microparticle acceleration system based on laser ablation and its application on drug delivery)

  • 최지혜;;이현희;여재익
    • 한국항공우주학회지
    • /
    • 제36권6호
    • /
    • pp.587-593
    • /
    • 2008
  • 본 연구의 목적은 신체 조직의 손상을 최소화할 수 있는 경피(transdermal) 및 국부적인(topical) 약물전달을 가능하게 하는 마이크로 입자가속시스템 개발에 있다. Ballistic 역학을 기반으로 하는 본 방법을 통하여 체순환을 위한 경피 및 국부적 약물 전달이 가능하다. 얇은 금속 포일의 한 쪽 면에 마이크로 입자들을 얹어놓고 뒷면에 레이저를 조사하면 충격파가 발생하고, 이 충격파는 포일을 통과하며 포일의 끝에서 금속-공기간의 acoustic impedance 차이로 expansion wave로 반사되어 포일이 반대 방향으로 변형을 일으키게 한다. 이 순간적인 변형으로 인해 포일에 붙어있던 마이크로 입자들이 가속되어 튕겨 나가게 된다. 입자들이 가속되는 속도가 굉장히 크기 때문에 이들은 신체 조직을 침투할 만한 충분한 운동량을 갖고 있다. 입자들의 침투 여부를 확인하기 위해 우리는 5${\mu}m$ 크기의 코발트 입자들을 연조직을 묘사하는 젤라틴에 가속시켰으며, 주목할 만한 침투 깊이를 얻으며 실험에 성공하였다.

초음파를 이용한 피록시캄의 경피흡수 (Phonophoretic Delivery of Piroxicam)

  • 정규호;김영일;양재헌
    • Journal of Pharmaceutical Investigation
    • /
    • 제32권4호
    • /
    • pp.259-265
    • /
    • 2002
  • Piroxicam is one of the NSAID, which is used in the systemic and topical treatment of a variety of inflammatory conditions. Conventionally, for topical use, the drug is formulated in gel. We designed an phonophoretic drug delivery system to investigate the piroxicam permeability and the influence of ultrasound application (continuous mode, pulsed mode), frequency (1.0 MHz, 3.0 MHz) and intensity $(1.0\;w/cm^2,\;1.5\;w/cm^2,\;2.0\;w/cm^2)$ with 0.5% piroxicam gel. Per cutaneous absorption studies were performed in vitro models to determine the rate of drug absorption via the skin. Permeation study using hairless mouse skin was performed at $37^{\circ}C$ using buffered saline (pH 7.4, 10% propylene glycol solution) as the receptor solution. Anti-inflammatory activity was determined using carrageenan-induced foot edema model in rat. A pronounced effect of ultrasound on the skin absorption of the piroxicam was observed at all ultrasound energy level studied. Ultrasound was carried out for 10 hr. The highest permeation was observed at intensity of $2.0\;w/cm^2$, frequency of 1.0 MHz and continuous output. The inclusion of phonophoresis was found to improve significantly the skin permeation in vitro and the anti-inflammatory activity in vivo.

Enhanced Transdermal Delivery of Pranoprofen from the Bioadhesive Gels

  • Shin, Sang-Chul;Cho, Cheong-Weon
    • Archives of Pharmacal Research
    • /
    • 제29권10호
    • /
    • pp.928-933
    • /
    • 2006
  • Percutaneous delivery of NSAIDs has advantages of avoiding hepatic first pass effect and delivering the drug for extended period of time at a sustained, concentrated level at the inflammation site that mainly acts at the joint and the related regions. To develop the new topical formulations of pranoprofen that have suitable bioadhesion, the gel was formulated using hydroxypropyl methylcellulose (HPMC) and poloxamer 407. The effects of temperature on drug release was performed at $32^{\circ}C$, $37^{\circ}C$ and $42^{\circ}C$ according to drug concentration of 0.04%, 0.08%, 0.12%, 0.16%, and 0.2% (w/w) using synthetic cellulose membrane at $37{\pm}0.5^{\circ}C$. The increase of temperature showed the increased drug release. The activation energy (Ea), which were calculated from the slope of lop P versus 1000/T plots was 11.22 kcal/ mol for 0.04%, 10.79 kcal/mol for 0.08%, 10.41 kcal/mol for 0.12% and 8.88 kcal/mol for 0.16% loading dose from the pranoprofen gel. To increase the drug permeation, some kinds of penetration enhancers such as the ethylene glycols, the propylene glycols, the glycerides, the non-ionic surfactants and the fatty acids were incorporated in the gel formulation. Among the various enhancers used, propylene glycol mono laurate showed the highest enhancing effects with the enhancement factor of 2.74. The results of this study suggest that development of topical gel formulation of pranoprofen containing an enhancer is feasible.

Investigation of Tacrolimus Loaded Nanostructured Lipid Carriers for Topical Drug Delivery

  • Nam, So-Hee;Ji, Xu Ying;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.956-960
    • /
    • 2011
  • The objective of this investigation was to develop nanostructured lipid carriers (NLCs) of tacrolimus by the hot homogenization technique by sonication. NLCs are commonly prepared by emulsification and lyophilization. The feasibility of fabricating tacrolimus-loaded NLCs was successfully demonstrated in this study. The developed NLCs were characterized in terms of their particle size, zeta potential, entrapment efficiency (EE) of tacrolimus, and morphology. Studies were conducted to evaluate the effectiveness of the NLCs in improving the penetration rate through hairless mouse skin. Tacrolimus-loaded NLCs were found to have an average size of $123.4{\pm}0.3\;nm$, a zeta potential of $-24.3{\pm}6.2\;mV$, and an EE of 50%. In vitro penetration tests revealed that the tacrolimus-loaded NLCs have a penetration rate that is 1.64 times that of the commercial tacrolimus ointment, Protopic$^{(R)}$.

Development of Clotrimazole Gels for Enhanced Transdermal Delivery

  • Cho, Hwa-Young;Kim, Dal-Keun;Park, ung-Chan;Kang, Chung;Oh, In-Joon;Kim, Seong-Jin;Shin, Sang-Chu
    • Journal of Pharmaceutical Investigation
    • /
    • 제39권6호
    • /
    • pp.437-443
    • /
    • 2009
  • To develop a topical bioadhesive formulation of clotrimazole for enhanced transdermal delivery, hydroxypropyl methylcellulose gel containing permeation enhancer was formulated and permeation studies were carried out. The release characteristics of the drug from the gel formulation were examined according to the receptor medium, drug concentration, and temperature. The rate of drug release from the gel increased with increasing drug concentration and temperature. The activation energy (Ea) of drug permeation, which was calculated from the slope of log P versus 1/T plots, was 14.41kcal/mol for a 1%(w/w) loading dose. The enhancer, such as saturated, unsaturated fatty acids, pyrrolidones, propylene glycol derivatives, glycerides, and non-ionic surfactants, were incorporated onto the gels to increase the amount of drug permeation into the skin. Among the enhancers used, polyoxyethylene 2-oleyl ether showed the highest level of enhancement. These results show that clotrimazole gels containing polyoxyethylene 2-oleyl ether could be used for the enhanced transdermal delivery of clotrimazole.

니오좀 시스템을 이용한 이트라코나졸 외용제의 제제 설계 및 평가 (Formulation Design and Evaluation of Niosome Containing Itraconazole for Dermal Delivery System)

  • 조혜정;경기열;이계원;지웅길
    • Journal of Pharmaceutical Investigation
    • /
    • 제35권3호
    • /
    • pp.165-171
    • /
    • 2005
  • Itraconazole is a triazole antifungal agent to inhibit most fungal pathogens. However, it is difficult for itraconazloe to be delivered by topical system due to its poor aqueous solubility. First, niosomes containing drug were prepared with span 60, cholesterol. tocopherol and poloxamer 407 as vesicle forming agents in an effort to increase solubility of itraconazole. And then prepared niosomes were dispersed in O/W creams (containing xanthan gum, glycerin, vaseline, glyceryl monostearate and $Cerix^{\circledR}-5$) or gels (containing xanthan gum and poloxamer 407). Both creams and gels were evaluated with respect to their rheological properties, in vitro permeation through excised skin of hairless mouse. Creams or gels containing niosome showed pseudoplastic flow and hysteresis loop. For both creams and gels, viscosity was increased with increasing the content of glycerine or vaseline and the content of gel forming polymer, respectively. In creams, the permeability of drug to skin was decreased with increasing the viscosity of cream. The permeability of drug was affected by pH as well as viscosity of gel. In vitro permeation test results demonstrated that cream formulations showed better permeability than gels. In conclusion, these results suggest that creams formulation containing niosome can be useful for the topical delivery of intraconazole.