• 제목/요약/키워드: Topic-Association

검색결과 977건 처리시간 0.027초

토픽맵의 다중역할 토픽 보존을 위한 관계형 데이터베이스 구조 (Relational Database Structure for Preserving Multi-role Topics in Topic Map)

  • 정윤수;이춘열;김남규
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제18권3호
    • /
    • pp.327-349
    • /
    • 2009
  • Traditional keyword-based searching methods suffer from low accuracy and high complexity due to the rapid growth in the amount of information. Accordingly, many researchers attempt to implement a so-called semantic search which is based on the semantics of the user's query. Semantic information can be described using a semantic modeling language, such as Topic Map. In this paper, we propose a new method to map a topic map to a traditional Relational Database (RDB) without any information loss. Although there have been a few attempts to map topic maps to RDB, they have paid scant attention to handling multi-role topics. In this paper, we propose a new storage structure to map multi-role topics to traditional RDB. The proposed structure consists of a mapping table, role tables, and content tables. Additionally, we devise a query translator to convert a user's query to one appropriate to the proposed structure.

  • PDF

클라우드 환경에서 데이터 통합 관리를 위한 TMDM (TMDM for Data Integration Management in Cloud Environment)

  • 문석재;신효영;정계동
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.970-973
    • /
    • 2012
  • 클라우드 환경에서 기업들은 상호 연결되지 않은 여러 개의 시스템과 데이터베이스에 각각 마스터 정보를 분산 저장하여 사용하고 있다. 관리되지 않은 마스터 정보는 부정확하고, 상호 불일치하기에 비즈니스 프로세스의 효율성을 저하시키고, 최적의 의사결정을 할 수가 없게된다. 효율적이고 오류 없는 비즈니스 프로세스 운용을 위해서는 고품질의 마스터 정보의 관리가 필요하다. 본 논문은 클라우드 환경에서 상호 연계되는 마스터 정보 간의 발생하는 이질적인 문제를 해결하고, 비즈니스 프로세스를 효율적으로 운용하기 위한 방안으로 TMDM(Topic Maps Master Data Management)을 제안한다. TMDM는 데이터 간의 연관성을 고려한 Topic Maps를 이용하여 마스터 정보 간의 상호 불일치 문제를 해결하기 위해 제안된 지식 저장소이다. Topic Maps는 하나의 토픽을 통해 토픽이 표현하는 주제에 관련된 모든 지식 정보를 접근할 수 있도록 토픽간의 association을 통해 연결할 수 있다. 이러한 점은 클라우드 내에서 레거시 시스템 간 마스터 정보에도 적용할 수 있다.

  • PDF

태권도 뉴스기사의 연도별 주제어 비교분석: 토픽모델링 적용 (Comparative Analysis of the Keywords in Taekwondo News Articles by Year: Applying Topic Modeling Method)

  • 전민수;임효성
    • 디지털융복합연구
    • /
    • 제19권11호
    • /
    • pp.575-583
    • /
    • 2021
  • 이 연구는 토픽모델링을 적용하여 뉴스기사에 따른 태권도 동향을 연도별로 분석하는 것에 목적이 있다. 언론보도를 통한 태권도 동향을 살펴보기 위해 한국언론재단의 빅카인즈를 통해 뉴스기사와 태권도 전문 언론에 대한 기사를 수집하였다. 검색기간은 2000년 이전, 2001년~2010년, 2011년~2020년 3개의 구간으로 구분하여 검색하여 총 12,124개를 연구자료로 선정하였다. 토픽분석을 위해 전처리 과정을 거쳤으며, LDA 알고리즘을 활용하여 토픽분석을 수행하였다. 이때 모든분석은 python 3을 적용하였다. 그 결과 첫째, 연도별에 따른 언론기사 주제를 분석한 결과 2000년이전 1위는 '세계'. 2위는 '남북', 3위는 '올림픽'으로 나타났으며, 2001년~2010년 1위는 '세계', 2위는 '협회', 3위는 '세계태권도연맹'으로 조사되었다. 2011년~2020년 1위는 '세계', 2위는 '시범', 3위는 '국기원'으로 나타났다. 둘째, 2000년이전 뉴스기사를 토픽모델링으로 분석한 결과 토픽은 2가지로 구분되었다. 구체적으로 Topic 1은 '남·북 체육교류', Topic 2는 '올림픽 시범종목 채택'으로 선정되었다. 셋째, 2001년~2010년 뉴스기사를 토픽모델링으로 분석한 결과 토픽은 3가지로 선정되었다. Topic 1은 '태권도 시범공연 및 비리', Topic 2는 '무주태권도공원 조성', Topic 3은 '세계태권도축제'로 선정되었다. 넷째, 2011년~2020년 뉴스기사를 토픽모델링으로 분석한 결과 토픽은 3가지로 선정되었다. Topic 1은 '2018 평창동계올림픽 성공 개최', Topic 2는 '남북 태권도 합동시범공연 ', Topic 3은 '2017 무주세계태권도선수권대회'로 선정되었다.

토픽 모델링을 활용한 한국콘텐츠학회 논문지 연구 동향 탐색 (An Exploratory Research Trends Analysis in Journal of the Korea Contents Association using Topic Modeling)

  • 석혜은;김수영;이연수;조현영;이수경;김경화
    • 한국콘텐츠학회논문지
    • /
    • 제21권12호
    • /
    • pp.95-106
    • /
    • 2021
  • 본 연구의 목적은 한국콘텐츠학회 논문지에 게재된 9,858건의 논문을 대상으로 토픽 모델링을 활용하여 지난 20년간 연구동향을 탐색함으로써 콘텐츠 연구개발에서의 주요 토픽을 도출하고 학술적 발전방향을 제공하는데 있다. 추출된 토픽의 신뢰성과 타당성을 확보하기 위해 양적 평가기법 뿐만 아니라 정성적 기법을 단계적으로 적용하여 연구자들이 합의한 수준의 말뭉치가 생성될 때까지 이를 반복적으로 수행하였으며 이에 따른 구체적인 분석 절차를 제시하였다. 분석 결과 8개의 핵심 토픽이 추출되었다. 이는 한국콘텐츠학회가 특정 학문 분야를 한정하지 않고 다양한 분야의 융·복합 연구 논문을 발간하고 있음을 보여준다. 또한 2012년 이전 상반기에는 공학기술 분야 토픽 비중이 상대적으로 높게 나타난 반면, 2012년 이후 하반기에는 사회과학 분야 토픽 출현 비중이 상대적으로 높게 나타났다. 구체적으로 '사회복지' 토픽은 상반기 대비 하반기에 약 4배수 증가세가 나타났다. 토픽별 추세분석을 통해 추세선의 변곡점이 나타난 특정 시점에 주목하여 해당 토픽의 연구동향에 영향을 미친 외적 변인을 탐색하였고 토픽과 외적 변인 간 관련성을 파악하였다. 본 연구결과가 국내 콘텐츠 관련 연구 개발 및 산업 분야에서 진행되고 있는 활발한 논의를 진행하는데 시사점을 제공할 수 있기를 기대한다.

'좋아요'와 '싫어요'같은 간접적 사회적 정보의 방향과 강도는 온라인 뉴스 콘텐츠 댓글의 숙의의 질과 어떤 관련이 있는가? 토픽 모델링을 이용한 토픽 다양성 분석 (How Are the Direction and the Intensity of Indirect Social Information such as Likes and Dislikes Related to the Deliberative Quality of Online News Content Comments? A Topic Diversity Analysis Using Topic Modeling)

  • 민진영;이애리
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권4호
    • /
    • pp.303-327
    • /
    • 2021
  • Purpose The online comments on news content have become social information and are understood based on deliberative democracy. Although the related research has focused on the relationship between online comments and their deliberative quality, the social information provided by online comments consists of not only direct information such as comments themselves but also indirect information such as 'likes' and 'dislikes'. Therefore, the research on online comments and deliberative quality should study this direct and indirect information together, and the direction and the degree of the indirect information should be also considered with them. Design/methodology/approach This study distinguishes comments by the attached 'likes' and 'dislikes', identifies highly supported and highly unsupported comments by the intensity of 'likes' and 'dislikes', and investigates the relationship between their existence and the deliberative quality measured as the topic diversity. Then, we applied topic modeling to the 2,390 news articles and their 74,385 comments collected from five news sites. Findings The topic diversities of the supported and unsupported comments are related to the topic diversity of all comments but the degree of the relationship is higher in the case of supported comments. Furthermore, the existence of highly supported and unsupported comments is led to less diversity of all comments compared to the case where those comments are absent. Particularly, when only highly supported comments are present, topic diversity was lower than in the opposite case.

고객 선호 변화를 고려한 토픽 모델링 기반 추천 시스템 (A Topic Modeling-based Recommender System Considering Changes in User Preferences)

  • 강소영;김재경;최일영;강창동
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.43-56
    • /
    • 2020
  • 추천 시스템은 사용자가 다양한 옵션 중에서 최선의 선택을 할 수 있도록 도와준다. 그러나 추천 시스템이 상업적으로 성공하기 위해서는 극복할 몇 개의 문제점이 존재한다. 첫째, 추천시스템의 투명성 부족 문제이다. 즉, 추천된 상품이 왜 추천되었는지 사용자들이 알 수 없다. 둘째, 추천시스템이 사용자 선호의 변화를 즉각적으로 반영할 수 없는 문제이다. 즉, 사용자의 상품에 대한 선호는 시간이 지남에 따라 변함에도 불구하고, 추천시스템이 사용자 선호를 반영하기 위해서는 다시 모델을 재구축해야 한다. 따라서 본연구에서는 이러한 문제를 해결하기 위해 토픽 모델링과 순차 연관 규칙을 이용한 추천 방법론을 제안하였다. 토픽 모델링은 사용자에게 아이템이 왜 추천되었는지 설명하는데 유용하며, 순차 연관 규칙은 변화하는 사용자의 선호를 파악하는데 유용하다. 본 연구에서 제안한 방법은 크게 토픽 모델링 및 사용자 프로파일 생성 등 토픽 모델링에 기반한 사용자 프로파일 생성 단계와 토픽에 사용자 선호 확인 및 순차 연관 규칙 발견 등 순차 연관 규칙에 기반한 추천 단계로 구분된다. 벤치마크 시스템으로 협업 필터링 기반 추천 시스템을 개발하고, 아마존의 리뷰 데이터 셋을 이용하여 제안한 방법론의 성능을 비교 평가하였다. 비교 분석 결과, 제안한 방법론이 협업 필터링 기반 추천시스템보다 뛰어난 성능을 보였다. 따라서 본 연구에서 제안하는 추천 방법을 통해 추천 시스템의 투명성을 확보할 수 있을 뿐만 아니라, 시간에 따라 변화하는 사용자의 선호를 반영할 수 있다. 그러나 본 연구는 토픽과 관련된 상품을 추천하기 때문에, 토픽에 포함된 상품의 수가 많을 경우 추천이 정교하지 못하는 한계점이 있다. 또한 토픽의 수가 적기 때문에 토픽에 대한 순차 연관 규칙이 너무 적은 문제점이 있다. 향후 연구에서 이러한 문제점을 해결한다면 좋은 연구가 될 것으로 판단된다.

A Research on Difference Between Consumer Perception of Slow Fashion and Consumption Behavior of Fast Fashion: Application of Topic Modelling with Big Data

  • YANG, Oh-Suk;WOO, Young-Mok;YANG, Yae-Rim
    • 융합경영연구
    • /
    • 제9권1호
    • /
    • pp.1-14
    • /
    • 2021
  • Purpose: The article deals with the proposition that consumers' fashion consumption behavior will still follow the consumption behavior of fast fashion, despite recognizing the importance of slow fashion. Research design, data and methodology: The research model to verify this proposition is topic modelling with big data including unstructured textual data. we combined 5,506 news articles posted on Naver news search platform during the 2003-2019 period about fast fashion and slow fashion, high-frequency words have been derived, and topics have been found using LDA model. Based on these, we examined consumers' perception and consumption behavior on slow fashion through the analysis of Topic Network. Results: (1) Looking at the status of annual article collection, consumers' interest in slow fashion mainly began in 2005 and showed a steady increase up to 2019. (2) Term Frequency analysis showed that the keywords for slow fashion are the lowest, with consumers' consumption patterns continuing around 'brand.' (3) Each topic's weight in articles showed that 'social value' - which includes slow fashion - ranked sixth among the 9 topics, low linkage with other topics. (4) Lastly, 'brand' and 'fashion trend' were key topics, and the topic 'social value' accounted for a low proportion. Conclusion: Slow fashion was not a considerable factor of consumption behavior. Consumption patterns in fashion sector are still dominated by general consumption patterns centered on brands and fast fashion.

온라인 게임 리뷰의 특성이 리뷰 유용성에 미치는 영향: 토픽모델링을 활용하여 (The Impacts of Online Game Reviews' Characteristics on Review Helpfulness: Based on Topic Modeling Analysis)

  • 배성훈;김현묵;이의준;이새롬
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제31권4호
    • /
    • pp.161-187
    • /
    • 2022
  • Purpose This study analyzed the topic of game review contents and how the characteristics of game reviews affect the reviews helpfulness. In addition, this study explore the content of game reviews according to the game's sales strategy such as early access strategy and releasing without early access. Design/methodology/approach We collected a list of 3,572 action genre games released in 2020. 58,336 online reviews were collected by random sampling 50 reviews in each games, and topic modeling was performed on those reviews. We dynamized the results of topic modeling and analyzed the effect on review helpfulness with multiple regression analysis. Findings The results of analysis indicate that the longer the review is or the shorter the time it is written, the more helpful the review is. In addition the topic with positive and negative review has a significant effect on the review helpfulness. As a result of exploratory analysis, games from early access had relatively fewer reviews of story-related topics than games that were released without early access. These findings can present direct guidelines for collecting specific opinions from customers in the game industry when releasing games.

토픽 모델링을 이용한 사운드스케이프 연구 주제어 분석 (Analysis on Topics in Soundscape Research based on Topic Modeling)

  • 최수환
    • 한국콘텐츠학회논문지
    • /
    • 제19권7호
    • /
    • pp.427-435
    • /
    • 2019
  • 사운드스케이프(soundscape)는 소리를 통해 문화와 환경, 사회적 변화를 이해하는데 중요한 역할을 하는 자료이지만, 자료의 기록, 보존, 분류, 분석을 위한 체계적인 연구 프레임워크의 구축은 아직 초기 단계에 있다. 토픽 모델링(topic modeling)은 문서에 숨겨져 있는 테마 구조를 드러내주는 알고리즘으로 연구 동향 분석과 같이 대량의 문서에 내재된 주제어를 찾아내기에 적합한 기법이다. 본 연구에서는 사운드스케이프 연구 분야의 대표적 학술지인 의 논문을 토픽 모델링 기법으로 분석하여 사운드스케이프 연구 동향을 파악할 수 있는 주제어를 도출해 보고, 이를 사운드스케이프 온톨로지(Soundscape Ontology) 및 사운드 아카이브의 메타데이터 설계 시 활용할 수 있는 방안에 대해 살펴보고자 한다. 이는 향후 시맨틱 웹 기술인 링크드 데이터(Linked Data) 기반의 사운드스케이프 아카이브 구축을 위한 메타데이터 설계의 기초 연구가 될 것이다.