As a demand for a new video coding standard having higher coding efficiency than the existing standards is growing, recently, MPEG and VCEG has been developing and standardizing the next-generation video coding project, named Versatile Video Coding (VVC). Many inter prediction techniques have been introduced to increase the coding efficiency, and among them, an adaptive motion vector resolution (AMVR) technique has contributed on increasing the efficiency of VVC. However, the best motion vector can only be determined by computing many rate-distortion costs, thereby increasing encoding complexity. It is necessary to reduce the complexity for real-time video broadcasting and streaming services, but it is yet an open research topic to reduce the complexity of AMVR. Therefore, in this paper, an efficient technique is proposed, which reduces the encoding complexity of AMVR. For that, the proposed method exploits a special VVC tree structure (i.e., multi-type tree structure) to accelerate the decision process of AMVR. Experiment results show that the proposed decision method reduces the encoding complexity of VVC test model by 10% with a negligible loss of coding efficiency.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.1
/
pp.88-95
/
2021
This study aims to provide implications for establishing support policies for students by empirically analyzing data on university students dropouts. To this end, data of students enrolled in D University after 2017 were sampled and collected. The collected data was analyzed using topic modeling(LDA: Latent Dirichlet Allocation) technique, which is a probabilistic model based on text mining. As a result of the study, it was found that topics that were characteristic of dropout students were found, and the classification performance between groups through topics was also excellent. Based on these results, a specific educational support system was proposed to prevent dropout of university students. This study is meaningful in that it shows the use of text mining techniques in the education field and suggests an education policy based on data analysis.
Journal of the Korean Institute of Intelligent Systems
/
v.13
no.2
/
pp.216-221
/
2003
Emotions recognition is a topic on which little research has been done to date. This paper proposes a new method that can recognize the human s emotion from facial image by using eigenspace. To do so, first, we get the face image by using the skin color from the original color image acquired by CCD color camera. Second, we get the vector image which is projected the obtained face image into eigenspace. And then, we propose the method for finding out each person s identification and emotion from the weight of vector image. Finally, we show the practical application possibility of the proposed method through the experiment.
Sentiment classification is a recent subdiscipline of text classification, which is concerned not with the topic but with opinion. In this paper, we present a Korean sentence and document classification system using effective sentiment features. Korean sentiment classification starts from constructing effective sentiment feature sets for positive and negative. The synonym information of a English word thesaurus is used to extract effective sentiment features and then the extracted English sentiment features are translated in Korean features by English-Korean dictionary. A sentence or a document is represented by using the extracted sentiment features and is classified and evaluated by SVM(Support Vector Machine).
Journal of Information Science Theory and Practice
/
v.8
no.2
/
pp.6-17
/
2020
Word similarity is often measured to enhance system performance in the information retrieval field and other related areas. This paper reports on an experimental comparison of values for word similarity measures that were computed based on 50 intentionally selected words from a Reuters corpus. There were three targets, including (1) co-occurrence-based similarity measures (for which a co-occurrence frequency is counted as the number of documents or sentences), (2) context-based distributional similarity measures obtained from a latent Dirichlet allocation (LDA), nonnegative matrix factorization (NMF), and Word2Vec algorithm, and (3) similarity measures computed from the tf-idf weights of each word according to a vector space model (VSM). Here, a Pearson correlation coefficient for a pair of VSM-based similarity measures and co-occurrence-based similarity measures according to the number of documents was highest. Group-average agglomerative hierarchical clustering was also applied to similarity matrices computed by individual measures. An evaluation of the cluster sets according to an answer set revealed that VSM- and LDA-based similarity measures performed best.
Settlement estimation in cohesion materials is a crucial topic to tackle because of the complexity of the cohesion soil texture, which could be solved roughly by substituted solutions. The goal of this research was to implement recently developed machine learning features as effective methods to predict settlement (Sm) of shallow foundations over cohesion soil properties. These models include hybridized support vector regression (SVR), random forests (RF), and coot optimization algorithm (COM), and black widow optimization algorithm (BWOA). The results indicate that all created systems accurately simulated the Sm, with an R2 of better than 0.979 and 0.9765 for the train and test data phases, respectively. This indicates extraordinary efficiency and a good correlation between the experimental and simulated Sm. The model's results outperformed those of ANFIS - PSO, and COM - RF findings were much outstanding to those of the literature. By analyzing established designs utilizing different analysis aspects, such as various error criteria, Taylor diagrams, uncertainty analyses, and error distribution, it was feasible to arrive at the final result that the recommended COM - RF was the outperformed approach in the forecasting process of Sm of shallow foundation, while other techniques were also reliable.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.7
/
pp.607-615
/
2020
The purpose of this study was to analyze the research status and trends related to the industrial mathematics based on text mining techniques with a sample of 4910 papers collected in the SIAM Journal on Applied Mathematics from 1970 to 2019. The R program was used to collect titles, abstracts, and key words from the papers and to analyze topic modeling techniques based on LDA algorithm. As a result of the coherence score on the collected papers, 20 topics were determined optimally using the Gibbs sampling methods. The main results were as follows. First, studies on industrial mathematics were conducted in a variety of mathematics fields, including computational mathematics, geometry, mathematical modeling, topology, discrete mathematics, probability and statistics, with a focus on analysis and algebra. Second, 5 hot topics (mathematical biology, nonlinear partial differential equation, discrete mathematics, statistics, topology) and 1 cold topic (probability theory) were found based on time series regression analysis. Third, among the fields that were not reflected in the 2015 revised mathematics curriculum, numeral system, matrix, vector in space, and complex numbers were extracted as the contents to be covered in the high school mathematical curriculum. Finally, this study suggested strategies to activate industrial mathematics in Korea, described the study limitations, and proposed directions for future research.
Automatic analysis of concepts or semantic relations from text documents enables not only an efficient acquisition of relevant information, but also a comparison of documents in the concept level. We present a multiple cause model-based approach to text analysis, where latent topics are automatically extracted from document sets and similarity between documents is measured by semantic kernels constructed from the extracted topics. In our approach, a document is assumed to be generated by various combinations of underlying topics. A topic is defined by a set of words that are related to the same topic or cooccur frequently within a document. In a network representing a multiple-cause model, each topic is identified by a group of words having high connection weights from a latent node. In order to facilitate teaming and inferences in multiple-cause models, some approximation methods are required and we utilize an approximation by Helmholtz machines. In an experiment on TDT-2 data set, we extract sets of meaningful words where each set contains some theme-specific terms. Using semantic kernels constructed from latent topics extracted by multiple cause models, we also achieve significant improvements over the basic vector space model in terms of retrieval effectiveness.
$\cdot$ 영상 압축은 영상의 통계학적 분포, 반복성을 이용하여 빈도가 높은 데이터는 적은 수의 bits를, 빈도가 낮은 데이터에는 보다 많은 수의 bits를 할당하여 전체 영상을 나타내는 bits 수를 줄이는 것임. $\cdot$ 영상 압축은 크게 Lossy Coding, Lossless Coding으로 나뉘며, Lossy coding은 DCT, 양자화기, VLC Codes를 쓰며 압축 율은 높으나 원래의 영상을 정확히 복원하지 못함. $\cdot$ 영상 압축에 대한 국제 규격 협회는 JPEG, MPEG I, MPEG II, MPEG IV, H.261, H.263 등이 있으나 본 seminar에서는 JPEG 규격만 논함. $\cdot$ 의학 영상은 Resolution이 크고 study 단위로 관리되기 때문에 영상 데이터량이 많으나 진단의 목적으로 쓰이기 때문에 주로 lossless 압축을 쓰게 되나 압축율이 낮음.(3:1 이하). 최근에는 Fractal, Wavelet Coding을 통한 압축율을 증가 시키는 Image Compression Algorithms이 활용됨. $\cdot$ MPEG은 동영상의 압축 표준안이며, 동영상은 한frame 당 25개 이상의 정지 화상으로 이루어지기 때문에 JPEG 규격에서 사용되었던 기법이 그대로 활용되며 영상과 영상간, 또는 frame과 frame 간의 여상의 변화, 움직임을 Vector로 coding하는 interframe Coding 기법을 활용하나 설명하기에는 광범위한 topic이므로 본 seminar에서는 생략함.
International Journal of Computer Science & Network Security
/
v.22
no.1
/
pp.93-96
/
2022
Natural language processing (NLP) is utilized to understand a natural text. Text analysis systems use natural language algorithms to find the meaning of large amounts of text. Text classification represents a basic task of NLP with a wide range of applications such as topic labeling, sentiment analysis, spam detection, and intent detection. The algorithm can transform user's unstructured thoughts into more structured data. In this work, a text classifier has been developed that uses academic admission and registration texts as input, analyzes its content, and then automatically assigns relevant tags such as admission, graduate school, and registration. In this work, the well-known algorithms support vector machine SVM and K-nearest neighbor (kNN) algorithms are used to develop the above-mentioned classifier. The obtained results showed that the SVM classifier outperformed the kNN classifier with an overall accuracy of 98.9%. in addition, the mean absolute error of SVM was 0.0064 while it was 0.0098 for kNN classifier. Based on the obtained results, the SVM is used to implement the academic text classification in this work.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.