• Title/Summary/Keyword: Topic network analysis

Search Result 399, Processing Time 0.026 seconds

An Analysis of Changes in Social Issues Related to Patient Safety Using Topic Modeling and Word Co-occurrence Analysis (토픽 모델링과 동시출현 단어 분석을 활용한 환자안전 관련 사회적 이슈의 변화)

  • Kim, Nari;Lee, Nam-Ju
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.92-104
    • /
    • 2021
  • This study aims to analyze online news articles to identify social issues related to patient safety and compare the changes in these issues before and after the implementation of the Patient Safety Act. This study performed text mining through the R program, wherein 7,600 online news articles were collected from January 1, 2010, to March 5, 2020, and examined using keyword analysis, topic modeling, and word co-occurrence network analysis. A total of 2,609 keywords were categorized into 8 topics: "medical practice", "medical personnel", "infection and facilities", "comprehensive nursing service", "medicine and medical supplies", "system development and establishment for improvement", "Patient Safety Act" and "healthcare accreditation". The study revealed that keywords such as "patient safety awareness", "infection control" and "healthcare accreditation" appeared before the implementation of the Patient Safety Act. Meanwhile, keywords such as "patient safety culture". and "administration and injection" appeared after the act's implementation with improved ranking of importance pertaining to nursing-related terminology. Interest in patient safety has increased in the medical community as well as among the public. In particular, nursing plays an important role in improving patient safety. Therefore, the recognition of patient safety as a core competency of nursing and the persistent education of the public are vital and inevitable.

An Analysis of IT Trends Using Tweet Data (트윗 데이터를 활용한 IT 트렌드 분석)

  • Yi, Jin Baek;Lee, Choong Kwon;Cha, Kyung Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.143-159
    • /
    • 2015
  • Predicting IT trends has been a long and important subject for information systems research. IT trend prediction makes it possible to acknowledge emerging eras of innovation and allocate budgets to prepare against rapidly changing technological trends. Towards the end of each year, various domestic and global organizations predict and announce IT trends for the following year. For example, Gartner Predicts 10 top IT trend during the next year, and these predictions affect IT and industry leaders and organization's basic assumptions about technology and the future of IT, but the accuracy of these reports are difficult to verify. Social media data can be useful tool to verify the accuracy. As social media services have gained in popularity, it is used in a variety of ways, from posting about personal daily life to keeping up to date with news and trends. In the recent years, rates of social media activity in Korea have reached unprecedented levels. Hundreds of millions of users now participate in online social networks and communicate with colleague and friends their opinions and thoughts. In particular, Twitter is currently the major micro blog service, it has an important function named 'tweets' which is to report their current thoughts and actions, comments on news and engage in discussions. For an analysis on IT trends, we chose Tweet data because not only it produces massive unstructured textual data in real time but also it serves as an influential channel for opinion leading on technology. Previous studies found that the tweet data provides useful information and detects the trend of society effectively, these studies also identifies that Twitter can track the issue faster than the other media, newspapers. Therefore, this study investigates how frequently the predicted IT trends for the following year announced by public organizations are mentioned on social network services like Twitter. IT trend predictions for 2013, announced near the end of 2012 from two domestic organizations, the National IT Industry Promotion Agency (NIPA) and the National Information Society Agency (NIA), were used as a basis for this research. The present study analyzes the Twitter data generated from Seoul (Korea) compared with the predictions of the two organizations to analyze the differences. Thus, Twitter data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. To overcome these challenges, we used SAS IRS (Information Retrieval Studio) developed by SAS to capture the trend in real-time processing big stream datasets of Twitter. The system offers a framework for crawling, normalizing, analyzing, indexing and searching tweet data. As a result, we have crawled the entire Twitter sphere in Seoul area and obtained 21,589 tweets in 2013 to review how frequently the IT trend topics announced by the two organizations were mentioned by the people in Seoul. The results shows that most IT trend predicted by NIPA and NIA were all frequently mentioned in Twitter except some topics such as 'new types of security threat', 'green IT', 'next generation semiconductor' since these topics non generalized compound words so they can be mentioned in Twitter with other words. To answer whether the IT trend tweets from Korea is related to the following year's IT trends in real world, we compared Twitter's trending topics with those in Nara Market, Korea's online e-Procurement system which is a nationwide web-based procurement system, dealing with whole procurement process of all public organizations in Korea. The correlation analysis show that Tweet frequencies on IT trending topics predicted by NIPA and NIA are significantly correlated with frequencies on IT topics mentioned in project announcements by Nara market in 2012 and 2013. The main contribution of our research can be found in the following aspects: i) the IT topic predictions announced by NIPA and NIA can provide an effective guideline to IT professionals and researchers in Korea who are looking for verified IT topic trends in the following topic, ii) researchers can use Twitter to get some useful ideas to detect and predict dynamic trends of technological and social issues.

Exploring the Research Trend Changes on Convergence Education of Before and After 2011 in Science Education (2011년 전후의 과학교육분야에서의 융합교육 연구동향의 변화 탐색)

  • Song, Youngwook;Paik, Seoung-Hey
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.5
    • /
    • pp.531-542
    • /
    • 2020
  • The purpose of this study is to explore the research trend changes of convergence education since 2011 compared to the convergence education research that has been steadily continuing in science education. The trend in convergence education were investigated by comparing the number of publications, research subjects, research content, and topic linkages with previous studies, and using the network analysis method to check recent research trends. In the field of science education, the number of papers related to convergence education has been published more than 8.0% steadily, and it has been increasing since 2012, then decreasing again from 2015 and gradually increasing again from 2017. The subjects of study were high in elementary school students, while those in middle school, high school, and university students were low. While the number of in-service teachers increased, the number of pre-service teachers decreased, and the literature and public increased somewhat. In study content, effectiveness studies decreased, while development studies increased, and theoretical and perception studies appeared similar. In thematic linkage, the intra-science linkage was 23.9%, and the extra-science linkage was 76.1% and engineering/technology and art were high in extra-science linkage. In network analysis, elementary, science, STEAM, and program words have a high frequency of appearance and appear together with other words to lead the network. The educational implications of the research trend of convergence education will be more emphasized in the field of science education in the future, and in order to take root in the education field, research on secondary students should be more actively studied. In addition, it is necessary to move away from research on STEAM-centered program development and effects, and to increase research to establish the philosophical basis and theoretical of convergence education.

The Analysis of Changes in East Coast Tourism using Topic Modeling (토핑 모델링을 활용한 동해안 관광의 변화 분석)

  • Jeong, Eun-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.489-495
    • /
    • 2020
  • The amount of data is increasing through various IT devices in a hyper-connected society where the 4th revolution is progressing, and new value can be created by analyzing that data. This paper was collected total 1,526 articles from 2017 to 2019 in central magazines, economic magazines, regional associations, and major broadcasting companies with the keyword "(East Coast Tourism or East Coast Travel) and Gangwon-do" through Bigkinds. It was performed the topic modeling using LDA algorithm implemented in the R language to analyze the collected 1,526 articles. It was extracted keywords for each year from 2017 to 2019, and classified and compared keywords with high frequency for each year. It was setted the optimal number of topics to 8 using Log Likelihood and Perplexity, and then inferred 8 topics using the Gibbs Sampling method. The inferred topics were Gangneung and Beach, Goseong and Mt.Geumgang, KTX and Donghae-Bukbu line, weekend sea tour, Sokcho and Unification Observatory, Yangyang and Surfing, experience tour, and transportation network infra. The changes of articles on East coast tourism was was analyzed using the proportion of the inferred eight topics. As the result, the proportion of Unification Observatory and Mt. Geumgang showed no significant change, the proportion of KTX and experience tour increased, and the proportion of other topics decreased in 2018 compared to 2017. In 2019, the proportion of KTX and experience tour decreased, but the proportion of other topics showed no significant change.

Using Text Mining for the Analysis of Research Trends Related to Laws Under the Ministry of Oceans and Fisheries (텍스트 마이닝을 활용한 해양수산부 법률 관련 연구동향 분석연구)

  • Hwang, Kyu Won;Lee, Moon Suk;Yun, So Ra
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.549-566
    • /
    • 2022
  • Recently, artificial intelligence (AI) technology has progressed rapidly, and industries using this technology are significantly increasing. Further, analysis research using text mining, which is an application of artificial intelligence, is being actively developed in the field of social science research. About 125 laws, including joint laws, have been enacted under the Ministry of Oceans and Fisheries in various sectors including marine environment, fisheries, ships, fishing villages, ports, etc. Research on the laws under the Ministry of Oceans and Fisheries has been progressively conducted, and is steadily increasing quantitatively. In this study, the domestic research trends were analyzed through text mining, targeting the research papers related to laws of the Ministry of Oceans and Fisheries. As part of this research method, first, topic modeling which is a type of text mining was performed to identify potential topics. Second, co-occurrence network analysis was performed, focusing on the keywords in the research papers dealing with specific laws to derive the key themes covered. Finally, author network analysis was performed to explore social networks among authors. The results showed that key topics have been changed by period, and subjects were explored by targeting Ship Safety Law, Marine Environment Management Law, Fisheries Law, etc. Furthermore, in this study, core researchers were selected based on author network analysis, and the tendency for joint research performed by authors was identified. Through this study, changes in the topics for research related to the laws of the Ministry of Oceans and Fisheries were identified up to date, and it is expected that future research topics will be further diversified, and there will be growth of quantitative and qualitative research in the field of oceans and fisheries.

Exploring the Research Topic Networks in the Technology Management Field Using Association Rule-based Co-word Analysis (연관규칙 기반 동시출현단어 분석을 활용한 기술경영 연구 주제 네트워크 분석)

  • Jeon, Ikjin;Lee, Hakyeon
    • Journal of Technology Innovation
    • /
    • v.24 no.4
    • /
    • pp.101-126
    • /
    • 2016
  • This paper identifies core research topics and their relationships by deriving the research topic networks in the technology management field using co-word analysis. Contrary to the conventional approach in which undirected networks are constructed based on normalized co-occurrence frequency, this study analyzes directed networks of keywords by employing the confidence index of association rule mining for pairs of keywords. Author keywords included in 2,456 articles published in nine international journals of technology management in 2011~2014 are extracted and categorized into three types: THEME, METHOD, and FIELD. One-mode networks for each type of keywords are constructed to identify core research keywords and their interrelationships with each type. We then derive the two-mode networks composed of different two types of keywords, THEME-METHOD and THEME-FIELD, to explore which methods or fields are frequently employed or studied for each theme. The findings of this study are expected to be fruitfully referred for researchers in the field of technology management to grasp research trends and set the future research directions.

The Image of Ruralism in Korea through a Text Mining for Online News Media analysis (인터넷 뉴스 데이터 텍스트 분석을 통해 본 우리나라 농촌다움에 대한 이미지 연구)

  • Son, Yong-hoon;Kim, Young-jin
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.4
    • /
    • pp.13-26
    • /
    • 2019
  • The rural areas in South Korea have changed rapidly in the process of national land development. Rural landscapes have become discoloured, and their attractiveness has decreased as cities have expanded. But the attractiveness or multifunctional values of rural areas has become more important in contemporary society around the world. According to this social demand, the efforts of conserving the rural landscape are of high priority and the recovery of ruralism in the area is required. This study has tried to understand how the public image of ruralism in South Korea has been influenced by the news media. The study retrieved news articles using the web searching portal site from the six keywords, commonly used to refer to ruralism, including 'rural landscape', 'rural community', 'rural tourism', 'rural life', 'rural amenity', and 'rural environment'. News data from the six keywords were also collected respectively from within the year-period of 2004-05, 2007-08, 2012-13, and 2016-17. In the text mining analysis, the nouns with high Degree Centrality were figured out, and the changes by year-period were identified. Then, LDA topic analysis was performed for text datasets of six keywords. As a result, the study found that the news articles gave an informed focus on only a handful of issues such as 'poor rural living condition', 'regional or village improvement projects', 'rural tourism promotion projects', and 'other government support projects'. On the other hand, nouns related to virtues and values in the rural landscape were less shown in news articles. These results have become more apparent in recent years. In the topic analysis, 35 topics were identified. 'village development projects', 'rural tourism', and 'urban-rural exchange projects' were appeared repeatedly in several keywords. Among the topics, there are also topics closely related to ruralism such as 'rural landscape conservation', 'eco-friendly rural areas', 'local amenity resources', 'public interest values of agriculture', and 'rural life and communities'. The study presented an image map showing ruralism in South Korea using a network map between all topics and keywords. At the end of the study, implications for Korean rural area policy and research directions were discussed.

Accessibility Analysis Method based on Public Facility Attraction Index Using SNS Data (SNS 데이터를 이용한 공공시설 매력도지수에 따른 접근성 분석기법)

  • Lee, Ji Won;Yu, Ki Yun;Kim, Ji Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.1
    • /
    • pp.29-42
    • /
    • 2019
  • In order to expand the qualitative aspects of public facility, this study used SNS data to derive user-oriented preference factors for public facilities and then were quantified in terms of supply side and demand side. To derive preference factor, LDA, one of topic modeling, was used and attraction index was calculated for each facility. In addition we analyzed spatial accessibility to measure the degree of service experience of users by using 2SFCA model. The study area covered public libraries of Seoul, Korea. As a result of study, five topics were extracted as preference factors for the public library: Circumstance, Scale of facility, Cultural program, Parenting, Books and materials. In particular topic of circumstance and parenting were newly derived preference factors unknown in previous studies. As a result of calculating attraction index for each library, the index of Songpa Library, Jungdok Library, and Namsan Library was high. Songpa library has received good evaluation in parenting factor, and Jungdok & Namsan library in circumstance factor. The accessibility of each region seems to better in center of Seoul where public libraries are crowded, but shrinking toward the outskirts. We expect that the proposed method will contribute to user-oriented public facility evaluation and policy decision making.

Technology Development Strategy of Piggyback Transportation System Using Topic Modeling Based on LDA Algorithm

  • Jun, Sung-Chan;Han, Seong-Ho;Kim, Sang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.261-270
    • /
    • 2020
  • In this study, we identify promising technologies for Piggyback transportation system by analyzing the relevant patent information. In order for this, we first develop the patent database by extracting relevant technology keywords from the pioneering research papers for the Piggyback flactcar system. We then employed textmining to identify the frequently referred words from the patent database, and using these words, we applied the LDA (Latent Dirichlet Allocation) algorithm in order to identify "topics" that are corresponding to "key" technologies for the Piggyback system. Finally, we employ the ARIMA model to forecast the trends of these "key" technologies for technology forecasting, and identify the promising technologies for the Piggyback system. with keyword search method the patent analysis. The results show that data-driven integrated management system, operation planning system and special cargo (especially fluid and gas) handling/storage technologies are identified to be the "key" promising technolgies for the future of the Piggyback system, and data reception/analysis techniques must be developed in order to improve the system performance. The proposed procedure and analysis method provides useful insights to develop the R&D strategy and the technology roadmap for the Piggyback system.

An Informetric Analysis on the Notation of East Sea Recorded in Academic Journals ('동해' 표기에 대한 계량적 분석)

  • Han, Jong Yup
    • Journal of the Korean Society for information Management
    • /
    • v.32 no.1
    • /
    • pp.23-41
    • /
    • 2015
  • This study worked on the qualitative analysis about nomenclature East Sea by the record type in researches related to East Sea shown in the scientific journals. Here in this study, the way of marking is classified as three: 'sole notation of East Sea', 'sole notation of Sea of Japan', and 'simultaneous notation of both'. Based on a total of 4,192 selections from Web of Science DB, the analysis was followed up for change in time series by the notation type, notation type according to the nation that authors belong to, difference in research topic, impact factor, collaboration in research, and co-authorship network. The result turned out in this work that the sole notation of Sea of Japan accounted for the largest portion. It also showed that the rates of sole notation of East Sea and simultaneous notation have kept increasing continuously since the 1990s. Hub nations regarding the research of East Sea is five including Japan, Russia, Korea, USA, and China. In the case of sole notation of Sea of Japan, active collaboration studies are performed in USA, Russia, and China with a focus in Japan. In the case of sole notation of East Sea and simultaneous use, the research rate is relatively high in USA and Japan with a focus in Korea. As to the co-authorship network in the sole notation of Sea of Japan, sort of a "giant component" among different groups has been set up and through which the collaborative works are actively underway. However, it was found that the research of sole notation of East Sea is dispersed into small groups on the base of relevant individual institution.