• 제목/요약/키워드: Topic Network Analysis

검색결과 399건 처리시간 0.021초

Trend Analysis of Data Mining Research Using Topic Network Analysis

  • Kim, Hyon Hee;Rhee, Hey Young
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권5호
    • /
    • pp.141-148
    • /
    • 2016
  • In this paper, we propose a topic network analysis approach which integrates topic modeling and social network analysis. We collected 2,039 scientific papers from five top journals in the field of data mining published from 1996 to 2015, and analyzed them with the proposed approach. To identify topic trends, time-series analysis of topic network is performed based on 4 intervals. Our experimental results show centralization of the topic network has the highest score from 1996 to 2000, and decreases for next 5 years and increases again. For last 5 years, centralization of the degree centrality increases, while centralization of the betweenness centrality and closeness centrality decreases again. Also, clustering is identified as the most interrelated topic among other topics. Topics with the highest degree centrality evolves clustering, web applications, clustering and dimensionality reduction according to time. Our approach extracts the interrelationships of topics, which cannot be detected with conventional topic modeling approaches, and provides topical trends of data mining research fields.

Topic Analysis of Scholarly Communication Research

  • Ji, Hyun;Cha, Mikyeong
    • Journal of Information Science Theory and Practice
    • /
    • 제9권2호
    • /
    • pp.47-65
    • /
    • 2021
  • This study aims to identify specific topics, trends, and structural characteristics of scholarly communication research, based on 1,435 articles published from 1970 to 2018 in the Scopus database through Latent Dirichlet Allocation topic modeling, serial analysis, and network analysis. Topic modeling, time series analysis, and network analysis were used to analyze specific topics, trends, and structures, respectively. The results were summarized into three sets as follows. First, the specific topics of scholarly communication research were nineteen in number, including research resource management and research data, and their research proportion is even. Second, as a result of the time series analysis, there are three upward trending topics: Topic 6: Open Access Publishing, Topic 7: Green Open Access, Topic 19: Informal Communication, and two downward trending topics: Topic 11: Researcher Network and Topic 12: Electronic Journal. Third, the network analysis results indicated that high mean profile association topics were related to the institution, and topics with high triangle betweenness centrality, such as Topic 14: Research Resource Management, shared the citation context. Also, through cluster analysis using parallel nearest neighbor clustering, six clusters connected with different concepts were identified.

독후감 텍스트의 토픽모델링 적용에 관한 탐색적 연구 (A Study on the Application of Topic Modeling for the Book Report Text)

  • 이수상
    • 한국도서관정보학회지
    • /
    • 제47권4호
    • /
    • pp.1-18
    • /
    • 2016
  • 이 연구는 독후감 텍스트의 주제분석에 토픽모델링의 활용방안을 탐색하는 것을 목적으로 하고 있다. 텍스트의 주제분석 방안으로서 토픽모델링 분석방법을 이해하고, R에서 제공하는 "topicmodels" 패키지의 LDA 함수를 사용하여 23건의 사례 독후감 텍스트들을 대상으로 실제의 분석작업을 수행하였다 토픽모델링 분석결과 16개의 토픽들을 추출하였고 토픽과 구성 단어들의 관계에서 토픽 네트워크 사례 독후감과 토픽들의 관계에서 독후감 네트워크를 구성하였다. 이후 토픽 네트워크와 독후감 네트워크를 대상으로 중심성 분석을 수행하였으며 분석결과는 다음과 같다. 첫째 16개의 토픽들이 1개의 컴포넌트를 가지는 네트워크로 나타났다. 이것은 16개 토픽들이 상호 연관되어 있다는 것을 의미한다. 둘째, 독후감 네트워크에서는 연결정도 중심성이 높은 독후감들과 낮은 독후감들로 구분이 되었다. 전자의 독후감들은 다른 독후감들과 주제적으로 유사성을 가지며 후자의 독후감들은 다른 독후감들과 주제적으로 상이성을 가지는 것으로 해석하였다. 토픽모델링의 결과를 네트워크 분석과 결합함으로써 독후감의 주제파악에 유용한 결과들을 얻게 되었다.

Research trends in the Korean Journal of Women Health Nursing from 2011 to 2021: a quantitative content analysis

  • Ju-Hee Nho;Sookkyoung Park
    • 여성건강간호학회지
    • /
    • 제29권2호
    • /
    • pp.128-136
    • /
    • 2023
  • Purpose: Topic modeling is a text mining technique that extracts concepts from textual data and uncovers semantic structures and potential knowledge frameworks within context. This study aimed to identify major keywords and network structures for each major topic to discern research trends in women's health nursing published in the Korean Journal of Women Health Nursing (KJWHN) using text network analysis and topic modeling. Methods: The study targeted papers with English abstracts among 373 articles published in KJWHN from January 2011 to December 2021. Text network analysis and topic modeling were employed, and the analysis consisted of five steps: (1) data collection, (2) word extraction and refinement, (3) extraction of keywords and creation of networks, (4) network centrality analysis and key topic selection, and (5) topic modeling. Results: Six major keywords, each corresponding to a topic, were extracted through topic modeling analysis: "gynecologic neoplasms," "menopausal health," "health behavior," "infertility," "women's health in transition," and "nursing education for women." Conclusion: The latent topics from the target studies primarily focused on the health of women across all age groups. Research related to women's health is evolving with changing times and warrants further progress in the future. Future research on women's health nursing should explore various topics that reflect changes in social trends, and research methods should be diversified accordingly.

자아 중심 네트워크 분석과 동적 인용 네트워크를 활용한 토픽모델링 기반 연구동향 분석에 관한 연구 (Combining Ego-centric Network Analysis and Dynamic Citation Network Analysis to Topic Modeling for Characterizing Research Trends)

  • 유소영
    • 정보관리학회지
    • /
    • 제32권1호
    • /
    • pp.153-169
    • /
    • 2015
  • 이 연구에서는 토픽 모델링 결과 해석의 용이성을 위하여, 동적 인용 네트워크를 활용하여 LDA 기반 토픽 모델링의 토픽 수를 설정하고 중복 배치된 주요 키워드를 자아 중심 네트워크 분석을 통해 재배치하여 제시하는 방법을 제안하였다. 'White LED' 두 분야의 논문 데이터를 이용하여 분석한 결과, 동적 인용 네트워크 분석을 통해 형성된 분석대상 문헌집단에 혼잡도에 따른 토픽수를 사용하고 중복 분류된 토픽 내 주요 키워드를 자아중심 네트워크 분석 기법을 적용하여 재배치한 결과가 토픽 간의 중복도가 가장 낮은 것으로 나타났다. 따라서 동적 인용 네트워크 및 자아 중심 네트워크 분석을 적용함으로써 토픽모델링에 의한 분석 결과를 보완하는 다면적인 연구 동향 분석이 가능할 것으로 보인다.

Research trends in dental hygiene based on topic modeling and semantic network analysis

  • Yun-Jeong Kim;Jae-Hee Roh
    • 한국치위생학회지
    • /
    • 제22권6호
    • /
    • pp.495-502
    • /
    • 2022
  • Objectives: The purpose of this study was to analyze research trends in dental hygiene using topic modeling and semantic network analysis. Methods: A total of 261 published studies were collected 686 key words from the Research Information Sharing Service (RISS) by 2019-2021. Topic modeling and semantic network analysis were performed using Textom. Results: The most frequently and frequency-inverse document frequently key words were 'dental hygienist', 'oral health', 'elderly', 'periodontal disease', 'dental hygiene'. N-gram of key words show that 'dental hygienist-emotional labor', 'dental hygienist-elderly', 'dental hygienist-job performance', 'oral health-quality of life', 'oral health-periodontal disease' etc. were frequently. Key words with high degree centrality were 'dental hygienist (0.317)', 'oral health (0.239)', 'elderly (0.127)', 'job satisfaction (0.057)', 'dental care (0.049)'. Extracted topics were 5 by topic modeling. Conclusions: Results from the current study could be available to know research trends in dental hygiene and it is necessary to improve more detailed and qualitative analysis in follow-up study.

토픽모델링과 에고 네트워크 분석을 활용한 스마트 헬스케어 연구동향 분석 (Research Trend Analysis on Smart healthcare by using Topic Modeling and Ego Network Analysis)

  • 윤지은;서창진
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권5호
    • /
    • pp.981-993
    • /
    • 2018
  • 스마트 헬스케어는 ICT 분야와 의료서비스 분야가 융 복합 된 분야로 다양한 분야에서 학제 간 융 복합 연구가 활발히 이루어지고 있다. 본 연구는 토픽모델링(Topic Modeling)과 에고 네트워크 분석(Ego Network Analysis)을 활용하여 스마트 헬스케어 연구동향을 살피는데 그 목적이 있다. 이를 위해 2001년부터 2018년 4월까지 Scopus에 게재된 2,690편을 대상으로 텍스트 분석, 각 기간별 빈도분석, 토픽모델링, 워드 클라우드, 에고 네트워크 분석을 수행하였다. 토픽 모델링 분석 결과 8개의 주요 연구토픽이 도출되었다. 8개 주요 연구토픽은 "AI in healthcare", " Smart hospital", "Healthcare platform", " blockchain in healthcare", "Smart health data", "Mobile healthcare", "Wellness care", "Cognitive healthcare" 순으로 나타났다. 토픽모델링 결과를 보다 심도 있게 살펴보기 위해 연구토픽별 에고 네트워크 분석을 하였다. 이를 통해 스마트 헬스케어 연구동향을 파악하고, 향후 연구의 방향성을 수립하는데 시사점을 제시하고자 한다.

An Ontology-Based Labeling of Influential Topics Using Topic Network Analysis

  • Kim, Hyon Hee;Rhee, Hey Young
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1096-1107
    • /
    • 2019
  • In this paper, we present an ontology-based approach to labeling influential topics of scientific articles. First, to look for influential topics from scientific article, topic modeling is performed, and then social network analysis is applied to the selected topic models. Abstracts of research papers related to data mining published over the 20 years from 1995 to 2015 are collected and analyzed in this research. Second, to interpret and to explain selected influential topics, the UniDM ontology is constructed from Wikipedia and serves as concept hierarchies of topic models. Our experimental results show that the subjects of data management and queries are identified in the most interrelated topic among other topics, which is followed by that of recommender systems and text mining. Also, the subjects of recommender systems and context-aware systems belong to the most influential topic, and the subject of k-nearest neighbor classifier belongs to the closest topic to other topics. The proposed framework provides a general model for interpreting topics in topic models, which plays an important role in overcoming ambiguous and arbitrary interpretation of topics in topic modeling.

공간빅데이터 연구 동향 파악을 위한 토픽모형 분석 (Topic Model Analysis of Research Trend on Spatial Big Data)

  • 이원상;손소영
    • 대한산업공학회지
    • /
    • 제41권1호
    • /
    • pp.64-73
    • /
    • 2015
  • Recent emergence of spatial big data attracts the attention of various research groups. This paper analyzes the research trend on spatial big data by text mining the related Scopus DB. We apply topic model and network analysis to the extracted abstracts of articles related to spatial big data. It was observed that optics, astronomy, and computer science are the major areas of spatial big data analysis. The major topics discovered from the articles are related to mobile/cloud/smart service of spatial big data in urban setting. Trends of discovered topics are provided over periods along with the results of topic network. We expect that uncovered areas of spatial big data research can be further explored.

Analysis of Laughter Therapy Trend Using Text Network Analysis and Topic Modeling

  • LEE, Do-Young
    • 웰빙융합연구
    • /
    • 제5권4호
    • /
    • pp.33-37
    • /
    • 2022
  • Purpose: This study aims to understand the trend and central concept of domestic researches on laughter therapy. For the analysis, this study used total 72 theses verified by inputting the keyword 'laughter therapy' from 2007 to 2021. Research design, data and methodology: This study performed the development and analysis of keyword co-occurrence network, analyzed the types of researches through topic modeling, and verified the visualized word cloud and sociogram. The keyword data that was cleaned through preprocessing, was analyzed in the method of centrality analysis and topic modeling through the 1-mode matrix conversion process by using the NetMiner (version 4.4) Program. Results: The keywords that most appeared for last 14 years were laughter therapy, depression, the elderly, and stress. The five topics analyzed in thesis data from 2007 to 2021 were therapy, cognitive behavior, quality of life, stress, and the elderly. Conclusions: This study understood the flow and trend of research topics of domestic laughter therapy for last 14 years, and there should be continuous researches on laughter therapy, which reflects the flow of time in the future.