• Title/Summary/Keyword: Topic Keywords

검색결과 387건 처리시간 0.022초

간호교육기관의 교육목적 및 교육목표에 대한 토픽 모델링 (Educational goals and objectives of nursing education programs: Topic modeling)

  • 박은준;옥종선;박찬숙
    • 한국간호교육학회지
    • /
    • 제28권4호
    • /
    • pp.400-410
    • /
    • 2022
  • Purpose: This study aimed to understand the keywords and major topics of the educational goals and objectives of nursing educational institutions in South Korea. Methods: From May 10 to May 20, 2022, the educational goals and objectives of all 201 nursing educational institutions in South Korea were collected. Using the NetMiner program, degree and degree centrality, semantic structure, and topic modeling were analyzed. Results: The top keywords and semantic structures of educational goals included 'respect for human (life)-spirit-science-based on, global-competency-professional nurse-nursing personnel-training, professional-science-knowledge-skills, and patients-therapeutic care-relationship.' The educational goals' major topics were clients well-being based on science and respect for human life, a practicing nurse with capabilities and spirit, fostering a nursing personnel with creativity and professionalism, and training of global nurses. The top keywords and semantic structures of the educational objectives included 'holistic care-nursing-research-action-capability, critical thinking-health-problem solving-capability, and efficiency-communication-collaboration-capability.' The educational objectives' major topics were 'nursing professionalism, communication and problem-solving capability; a change of healthcare environments and a progress of nursing practices; fostering professional nurses with creativity and global capability; and clients' health and nursing practice.' Conclusion: Educational goals in nursing presented specific nursing values and concepts, such as respect for human life, therapeutic care relationships, and the promotion of well-being. Educational objectives in nursing presented the competencies of nurses as defined by the Korean Accreditation Board of Nursing Education (KABONE). Recently, the KABONE announced new program outcomes and competencies, which will require the revision of educational goals. To achieve those educational objectives, it is suggested that the expected level of competencies be clearly defined for nursing graduates.

토픽모델링을 이용한 한국 인터넷 뉴스의 간호사 관련 기사 분석: COVID-19 유행시기를 중점으로 (A topic modeling analysis for Korean online newspapers: Focusing on the social perceptions of nurses during the COVID-19 epidemic period)

  • 장수정;박선아;손예동
    • 한국간호교육학회지
    • /
    • 제28권4호
    • /
    • pp.444-455
    • /
    • 2022
  • Purpose: This study explored the meaning of the social perceptions of nurses in online news articles during the coronavirus disease 2019 (COVID-19) pandemic. Methods: A total of 339 nurse-related articles published in Korean online newspapers from January 1 to December 31, 2020, were extracted by entering various combinations of OR and AND with the four words "Corona," "COVID," "Nursing," and "Nurse" as search keywords using BIGKinds, a news database provided by the Korea Press Foundation. The collected data were analyzed with a keyword network analysis and topic modeling using NetMiner 4. Results: The top keywords extracted from the nurse-related news articles were, in the following order, "metropolitan area," "protective clothing," "government," "task," and "admission." Four topics representing keywords were identified: "encouragement for dedicated nurses," "poor work environment," "front-line nurses working with obligation during the COVID-19 pandemic," and "nurses' efforts to prevent the spread of COVID-19." Conclusion: The media's attention to the dedication of nurses, the shortage of nursing resources, and the need for government support is encouraging in that it forms the public opinion necessary to lead to substantial improvements in treating nurses. The nursing community should actively promote policy proposals to improve treatment toward nurses by utilizing the net function of the media and proactively seek and apply strategies to improve the image of nurses working in various fields.

텍스트 마이닝을 이용한 리빙랩 연구동향 분석 (Research Trend Analysis on Living Lab Using Text Mining)

  • 김성묵;김영준
    • 디지털융복합연구
    • /
    • 제18권8호
    • /
    • pp.37-48
    • /
    • 2020
  • 본 연구는 텍스트 마이닝을 활용하여 리빙랩 연구의 동향을 파악하고 연구 방향 정립에 필요한 함의를 도출하고자 하였다. 리빙랩 관련 연구가 발표되기 시작한 2011년부터 2019년 11월까지의 논문 166편의 키워드와 초록을 대상으로 네트워크 분석 및 토픽 모델링 기법을 사용하여 분석하였다. 키워드 중 혁신, 지역, 사회, 기술, 스마트시티 등의 출현빈도가 높았고, 중심도 분석결과 현재까지 리빙랩 연구가 혁신, 사회, 기술, 개발, 사용자 등의 키워드를 중심으로 이루어짐을 파악하였다. 토픽 모델링 결과 지역혁신과 사용자지원, 정부 사회정책사업, 스마트시티 플랫폼구축, 기업기술혁신모델 및 시스템전환 참여 등 5개 토픽을 추출하였으며 토픽을 이어주는 키워드는 혁신, 기술, 사용자, 참여인것으로 분석하였다. 2017년 KNoLL 출범 후 토픽별 비중은 고른 분포로 연구 주제가 다양화됨을 확인하였다. 텍스트마이닝을 이용한 리빙랩 연구동향 분석과 방향 제시는 연구와 정책방향 수립에 유용한 자료를 제공할 수 있다.

키워드 네트워크 분석을 이용한 연구데이터 관련 국내 연구 동향 분석 (An Analysis of Domestic Research Trend on Research Data Using Keyword Network Analysis)

  • 한상우
    • 한국도서관정보학회지
    • /
    • 제54권4호
    • /
    • pp.393-414
    • /
    • 2023
  • 본 연구는 연구데이터 관련 국내 연구의 동향을 파악하기 위하여 RISS에서 연구데이터 관련 논문을 수집하였으며, 데이터 정제 후 총 58건의 연구논문을 대상으로 134개의 저자 키워드를 추출하여 키워드 네트워크 분석을 수행하였다. 분석 결과, 첫째, 아직까지 국내에서 연구데이터 관련 연구의 수가 58건에 지나지 않아 추후 많은 관련 연구가 진행될 필요가 있음을 알 수 있었다. 둘째, 연구데이터 관련 연구 분야는 대부분 복합학 중 문헌정보학에 집중되어 있었다. 셋째, 연구데이터 관련 저자 키워드의 빈도분석 결과 '연구데이터관리', '연구데이터공유', '데이터리포지터리', '오픈사이언스' 등이 다빈도 주요 키워드로 분석되어 연구데이터 관련 연구는 위의 키워드를 중심으로 진행되고 있음을 알 수 있었다. 키워드 네트워크 분석 결과에서도 다빈도 키워드는 연결 중심성 및 매개 중심성에서 중심적인 위치를 차지하며 관련 연구에서 핵심 키워드에 위치하고 있음을 알 수 있었다. 본 연구의 결과를 통하여 최근의 연구데이터 관련 동향을 파악할 수 있었고, 향후 집중적으로 연구해야 하는 분야를 확인할 수 있었다.

자아 중심 네트워크 분석과 동적 인용 네트워크를 활용한 토픽모델링 기반 연구동향 분석에 관한 연구 (Combining Ego-centric Network Analysis and Dynamic Citation Network Analysis to Topic Modeling for Characterizing Research Trends)

  • 유소영
    • 정보관리학회지
    • /
    • 제32권1호
    • /
    • pp.153-169
    • /
    • 2015
  • 이 연구에서는 토픽 모델링 결과 해석의 용이성을 위하여, 동적 인용 네트워크를 활용하여 LDA 기반 토픽 모델링의 토픽 수를 설정하고 중복 배치된 주요 키워드를 자아 중심 네트워크 분석을 통해 재배치하여 제시하는 방법을 제안하였다. 'White LED' 두 분야의 논문 데이터를 이용하여 분석한 결과, 동적 인용 네트워크 분석을 통해 형성된 분석대상 문헌집단에 혼잡도에 따른 토픽수를 사용하고 중복 분류된 토픽 내 주요 키워드를 자아중심 네트워크 분석 기법을 적용하여 재배치한 결과가 토픽 간의 중복도가 가장 낮은 것으로 나타났다. 따라서 동적 인용 네트워크 및 자아 중심 네트워크 분석을 적용함으로써 토픽모델링에 의한 분석 결과를 보완하는 다면적인 연구 동향 분석이 가능할 것으로 보인다.

트윗의 타임 시퀀스를 활용한 DTM 분석 : 2019 남북미정상회동 이벤트를 중심으로 (Tweets analysis using a Dynamic Topic Modeling : Focusing on the 2019 Koreas-US DMZ Summit)

  • 고은지;최선영
    • 한국정보통신학회논문지
    • /
    • 제25권2호
    • /
    • pp.308-313
    • /
    • 2021
  • 이 연구는 2019년 판문점 남북미 정상 회동 트윗을 타임 시퀀스와 함께 수집하여 시퀀셜 토픽모델링인 DTM으로 분석하였다. 트위터와 같은 마이크로 블로깅 서비스는 단일 이벤트에 뉴스와 오피니언이 혼재된 비정형 데이터가 대규모로 동시에 발생하고, 정보와 반응이 동일 메시지 형식으로 생산된다. 때문에 토픽 트렌드를 파악하려면 시퀀셜 데이터의 특성을 반영하여 패턴 분석을 해야 맥락적 의미를 알 수 있다. 토픽 일관성 점수를 구해 LDA를 평가한 후 DTM을 계산한 결과, 뉴스 보도와 오피니언 관련 토픽 30개가 도출되었고, 각 토픽과 키워드는 시간에 따라 발생 확률이 역동적으로 진화하고 있었다. 결론적으로 DTM은 특정 이벤트에 대한 사회 전반에 나타난 통합적 토픽 추이를 시간에 따라 분석하는데 적합한 모델임을 밝혔다.

LDA를 이용한 온라인 리뷰의 다중 토픽별 감성분석 - TripAdvisor 사례를 중심으로 - (Multi-Topic Sentiment Analysis using LDA for Online Review)

  • 홍태호;니우한잉;임강;박지영
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제27권1호
    • /
    • pp.89-110
    • /
    • 2018
  • Purpose There is much information in customer reviews, but finding key information in many texts is not easy. Business decision makers need a model to solve this problem. In this study we propose a multi-topic sentiment analysis approach using Latent Dirichlet Allocation (LDA) for user-generated contents (UGC). Design/methodology/approach In this paper, we collected a total of 104,039 hotel reviews in seven of the world's top tourist destinations from TripAdvisor (www.tripadvisor.com) and extracted 30 topics related to the hotel from all customer reviews using the LDA model. Six major dimensions (value, cleanliness, rooms, service, location, and sleep quality) were selected from the 30 extracted topics. To analyze data, we employed R language. Findings This study contributes to propose a lexicon-based sentiment analysis approach for the keywords-embedded sentences related to the six dimensions within a review. The performance of the proposed model was evaluated by comparing the sentiment analysis results of each topic with the real attribute ratings provided by the platform. The results show its outperformance, with a high ratio of accuracy and recall. Through our proposed model, it is expected to analyze the customers' sentiments over different topics for those reviews with an absence of the detailed attribute ratings.

Case-Related News Filtering via Topic-Enhanced Positive-Unlabeled Learning

  • Wang, Guanwen;Yu, Zhengtao;Xian, Yantuan;Zhang, Yu
    • Journal of Information Processing Systems
    • /
    • 제17권6호
    • /
    • pp.1057-1070
    • /
    • 2021
  • Case-related news filtering is crucial in legal text mining and divides news into case-related and case-unrelated categories. Because case-related news originates from various fields and has different writing styles, it is difficult to establish complete filtering rules or keywords for data collection. In addition, the labeled corpus for case-related news is sparse; therefore, to train a high-performance classification model, it is necessary to annotate the corpus. To address this challenge, we propose topic-enhanced positive-unlabeled learning, which selects positive and negative samples guided by topics. Specifically, a topic model based on a variational autoencoder (VAE) is trained to extract topics from unlabeled samples. By using these topics in the iterative process of positive-unlabeled (PU) learning, the accuracy of identifying case-related news can be improved. From the experimental results, it can be observed that the F1 value of our method on the test set is 1.8% higher than that of the PU learning baseline model. In addition, our method is more robust with low initial samples and high iterations, and compared with advanced PU learning baselines such as nnPU and I-PU, we obtain a 1.1% higher F1 value, which indicates that our method can effectively identify case-related news.

인터넷 뉴스 데이터 텍스트 분석을 통해 본 우리나라 농촌다움에 대한 이미지 연구 (The Image of Ruralism in Korea through a Text Mining for Online News Media analysis)

  • 손용훈;김용진
    • 농촌계획
    • /
    • 제25권4호
    • /
    • pp.13-26
    • /
    • 2019
  • The rural areas in South Korea have changed rapidly in the process of national land development. Rural landscapes have become discoloured, and their attractiveness has decreased as cities have expanded. But the attractiveness or multifunctional values of rural areas has become more important in contemporary society around the world. According to this social demand, the efforts of conserving the rural landscape are of high priority and the recovery of ruralism in the area is required. This study has tried to understand how the public image of ruralism in South Korea has been influenced by the news media. The study retrieved news articles using the web searching portal site from the six keywords, commonly used to refer to ruralism, including 'rural landscape', 'rural community', 'rural tourism', 'rural life', 'rural amenity', and 'rural environment'. News data from the six keywords were also collected respectively from within the year-period of 2004-05, 2007-08, 2012-13, and 2016-17. In the text mining analysis, the nouns with high Degree Centrality were figured out, and the changes by year-period were identified. Then, LDA topic analysis was performed for text datasets of six keywords. As a result, the study found that the news articles gave an informed focus on only a handful of issues such as 'poor rural living condition', 'regional or village improvement projects', 'rural tourism promotion projects', and 'other government support projects'. On the other hand, nouns related to virtues and values in the rural landscape were less shown in news articles. These results have become more apparent in recent years. In the topic analysis, 35 topics were identified. 'village development projects', 'rural tourism', and 'urban-rural exchange projects' were appeared repeatedly in several keywords. Among the topics, there are also topics closely related to ruralism such as 'rural landscape conservation', 'eco-friendly rural areas', 'local amenity resources', 'public interest values of agriculture', and 'rural life and communities'. The study presented an image map showing ruralism in South Korea using a network map between all topics and keywords. At the end of the study, implications for Korean rural area policy and research directions were discussed.

텍스트 마이닝 방법을 활용한 국내 학습상담 연구 동향 분석 (Analysis of Trends in Domestic Learning Counseling Research Using Text Mining Methods)

  • 현용찬;양지혜;박정환
    • 융합정보논문지
    • /
    • 제12권3호
    • /
    • pp.302-310
    • /
    • 2022
  • 본 연구는 청소년의 학습상담 관련 연구 동향을 텍스트 마이닝 방법을 활용하여 얻어진 결과를 살펴보고 후속 연구 방향을 제시하였다. 한국 청소년 고민의 상위 1, 2위는 학습과 진로이다. '학습상담', '학업상담'키워드로 RISS를 통하여 KCI 등재 후보 이상의 학술논문 201편을 대상으로 연구자의 주관과 편견을 최소화할 수 있는 텍스트 마이닝 기법으로 모델링 분석하였다. 학습상담 토픽 결과 상담 경험[토픽1], 집단상담 연구[토픽2], 부모상담[토픽3], 학습기술 프로그램 개발[토픽4]로 나타났다. 학습상담 관련 연구는 정서적인 안정을 위한 상담, 집단상담, 부모상담과 학습기술 프로그램이 개발되고 있다. 청소년의 고민을 해결하기 위한 학습상담은 심리 정서, 부모상담, 학습기술 전문가의 협업을 통한 통합적인 지원을 위한 연구가 지속되기를 기대한다.