Purpose: This study aimed to understand the keywords and major topics of the educational goals and objectives of nursing educational institutions in South Korea. Methods: From May 10 to May 20, 2022, the educational goals and objectives of all 201 nursing educational institutions in South Korea were collected. Using the NetMiner program, degree and degree centrality, semantic structure, and topic modeling were analyzed. Results: The top keywords and semantic structures of educational goals included 'respect for human (life)-spirit-science-based on, global-competency-professional nurse-nursing personnel-training, professional-science-knowledge-skills, and patients-therapeutic care-relationship.' The educational goals' major topics were clients well-being based on science and respect for human life, a practicing nurse with capabilities and spirit, fostering a nursing personnel with creativity and professionalism, and training of global nurses. The top keywords and semantic structures of the educational objectives included 'holistic care-nursing-research-action-capability, critical thinking-health-problem solving-capability, and efficiency-communication-collaboration-capability.' The educational objectives' major topics were 'nursing professionalism, communication and problem-solving capability; a change of healthcare environments and a progress of nursing practices; fostering professional nurses with creativity and global capability; and clients' health and nursing practice.' Conclusion: Educational goals in nursing presented specific nursing values and concepts, such as respect for human life, therapeutic care relationships, and the promotion of well-being. Educational objectives in nursing presented the competencies of nurses as defined by the Korean Accreditation Board of Nursing Education (KABONE). Recently, the KABONE announced new program outcomes and competencies, which will require the revision of educational goals. To achieve those educational objectives, it is suggested that the expected level of competencies be clearly defined for nursing graduates.
Purpose: This study explored the meaning of the social perceptions of nurses in online news articles during the coronavirus disease 2019 (COVID-19) pandemic. Methods: A total of 339 nurse-related articles published in Korean online newspapers from January 1 to December 31, 2020, were extracted by entering various combinations of OR and AND with the four words "Corona," "COVID," "Nursing," and "Nurse" as search keywords using BIGKinds, a news database provided by the Korea Press Foundation. The collected data were analyzed with a keyword network analysis and topic modeling using NetMiner 4. Results: The top keywords extracted from the nurse-related news articles were, in the following order, "metropolitan area," "protective clothing," "government," "task," and "admission." Four topics representing keywords were identified: "encouragement for dedicated nurses," "poor work environment," "front-line nurses working with obligation during the COVID-19 pandemic," and "nurses' efforts to prevent the spread of COVID-19." Conclusion: The media's attention to the dedication of nurses, the shortage of nursing resources, and the need for government support is encouraging in that it forms the public opinion necessary to lead to substantial improvements in treating nurses. The nursing community should actively promote policy proposals to improve treatment toward nurses by utilizing the net function of the media and proactively seek and apply strategies to improve the image of nurses working in various fields.
본 연구는 텍스트 마이닝을 활용하여 리빙랩 연구의 동향을 파악하고 연구 방향 정립에 필요한 함의를 도출하고자 하였다. 리빙랩 관련 연구가 발표되기 시작한 2011년부터 2019년 11월까지의 논문 166편의 키워드와 초록을 대상으로 네트워크 분석 및 토픽 모델링 기법을 사용하여 분석하였다. 키워드 중 혁신, 지역, 사회, 기술, 스마트시티 등의 출현빈도가 높았고, 중심도 분석결과 현재까지 리빙랩 연구가 혁신, 사회, 기술, 개발, 사용자 등의 키워드를 중심으로 이루어짐을 파악하였다. 토픽 모델링 결과 지역혁신과 사용자지원, 정부 사회정책사업, 스마트시티 플랫폼구축, 기업기술혁신모델 및 시스템전환 참여 등 5개 토픽을 추출하였으며 토픽을 이어주는 키워드는 혁신, 기술, 사용자, 참여인것으로 분석하였다. 2017년 KNoLL 출범 후 토픽별 비중은 고른 분포로 연구 주제가 다양화됨을 확인하였다. 텍스트마이닝을 이용한 리빙랩 연구동향 분석과 방향 제시는 연구와 정책방향 수립에 유용한 자료를 제공할 수 있다.
본 연구는 연구데이터 관련 국내 연구의 동향을 파악하기 위하여 RISS에서 연구데이터 관련 논문을 수집하였으며, 데이터 정제 후 총 58건의 연구논문을 대상으로 134개의 저자 키워드를 추출하여 키워드 네트워크 분석을 수행하였다. 분석 결과, 첫째, 아직까지 국내에서 연구데이터 관련 연구의 수가 58건에 지나지 않아 추후 많은 관련 연구가 진행될 필요가 있음을 알 수 있었다. 둘째, 연구데이터 관련 연구 분야는 대부분 복합학 중 문헌정보학에 집중되어 있었다. 셋째, 연구데이터 관련 저자 키워드의 빈도분석 결과 '연구데이터관리', '연구데이터공유', '데이터리포지터리', '오픈사이언스' 등이 다빈도 주요 키워드로 분석되어 연구데이터 관련 연구는 위의 키워드를 중심으로 진행되고 있음을 알 수 있었다. 키워드 네트워크 분석 결과에서도 다빈도 키워드는 연결 중심성 및 매개 중심성에서 중심적인 위치를 차지하며 관련 연구에서 핵심 키워드에 위치하고 있음을 알 수 있었다. 본 연구의 결과를 통하여 최근의 연구데이터 관련 동향을 파악할 수 있었고, 향후 집중적으로 연구해야 하는 분야를 확인할 수 있었다.
이 연구에서는 토픽 모델링 결과 해석의 용이성을 위하여, 동적 인용 네트워크를 활용하여 LDA 기반 토픽 모델링의 토픽 수를 설정하고 중복 배치된 주요 키워드를 자아 중심 네트워크 분석을 통해 재배치하여 제시하는 방법을 제안하였다. 'White LED' 두 분야의 논문 데이터를 이용하여 분석한 결과, 동적 인용 네트워크 분석을 통해 형성된 분석대상 문헌집단에 혼잡도에 따른 토픽수를 사용하고 중복 분류된 토픽 내 주요 키워드를 자아중심 네트워크 분석 기법을 적용하여 재배치한 결과가 토픽 간의 중복도가 가장 낮은 것으로 나타났다. 따라서 동적 인용 네트워크 및 자아 중심 네트워크 분석을 적용함으로써 토픽모델링에 의한 분석 결과를 보완하는 다면적인 연구 동향 분석이 가능할 것으로 보인다.
이 연구는 2019년 판문점 남북미 정상 회동 트윗을 타임 시퀀스와 함께 수집하여 시퀀셜 토픽모델링인 DTM으로 분석하였다. 트위터와 같은 마이크로 블로깅 서비스는 단일 이벤트에 뉴스와 오피니언이 혼재된 비정형 데이터가 대규모로 동시에 발생하고, 정보와 반응이 동일 메시지 형식으로 생산된다. 때문에 토픽 트렌드를 파악하려면 시퀀셜 데이터의 특성을 반영하여 패턴 분석을 해야 맥락적 의미를 알 수 있다. 토픽 일관성 점수를 구해 LDA를 평가한 후 DTM을 계산한 결과, 뉴스 보도와 오피니언 관련 토픽 30개가 도출되었고, 각 토픽과 키워드는 시간에 따라 발생 확률이 역동적으로 진화하고 있었다. 결론적으로 DTM은 특정 이벤트에 대한 사회 전반에 나타난 통합적 토픽 추이를 시간에 따라 분석하는데 적합한 모델임을 밝혔다.
Purpose There is much information in customer reviews, but finding key information in many texts is not easy. Business decision makers need a model to solve this problem. In this study we propose a multi-topic sentiment analysis approach using Latent Dirichlet Allocation (LDA) for user-generated contents (UGC). Design/methodology/approach In this paper, we collected a total of 104,039 hotel reviews in seven of the world's top tourist destinations from TripAdvisor (www.tripadvisor.com) and extracted 30 topics related to the hotel from all customer reviews using the LDA model. Six major dimensions (value, cleanliness, rooms, service, location, and sleep quality) were selected from the 30 extracted topics. To analyze data, we employed R language. Findings This study contributes to propose a lexicon-based sentiment analysis approach for the keywords-embedded sentences related to the six dimensions within a review. The performance of the proposed model was evaluated by comparing the sentiment analysis results of each topic with the real attribute ratings provided by the platform. The results show its outperformance, with a high ratio of accuracy and recall. Through our proposed model, it is expected to analyze the customers' sentiments over different topics for those reviews with an absence of the detailed attribute ratings.
Case-related news filtering is crucial in legal text mining and divides news into case-related and case-unrelated categories. Because case-related news originates from various fields and has different writing styles, it is difficult to establish complete filtering rules or keywords for data collection. In addition, the labeled corpus for case-related news is sparse; therefore, to train a high-performance classification model, it is necessary to annotate the corpus. To address this challenge, we propose topic-enhanced positive-unlabeled learning, which selects positive and negative samples guided by topics. Specifically, a topic model based on a variational autoencoder (VAE) is trained to extract topics from unlabeled samples. By using these topics in the iterative process of positive-unlabeled (PU) learning, the accuracy of identifying case-related news can be improved. From the experimental results, it can be observed that the F1 value of our method on the test set is 1.8% higher than that of the PU learning baseline model. In addition, our method is more robust with low initial samples and high iterations, and compared with advanced PU learning baselines such as nnPU and I-PU, we obtain a 1.1% higher F1 value, which indicates that our method can effectively identify case-related news.
The rural areas in South Korea have changed rapidly in the process of national land development. Rural landscapes have become discoloured, and their attractiveness has decreased as cities have expanded. But the attractiveness or multifunctional values of rural areas has become more important in contemporary society around the world. According to this social demand, the efforts of conserving the rural landscape are of high priority and the recovery of ruralism in the area is required. This study has tried to understand how the public image of ruralism in South Korea has been influenced by the news media. The study retrieved news articles using the web searching portal site from the six keywords, commonly used to refer to ruralism, including 'rural landscape', 'rural community', 'rural tourism', 'rural life', 'rural amenity', and 'rural environment'. News data from the six keywords were also collected respectively from within the year-period of 2004-05, 2007-08, 2012-13, and 2016-17. In the text mining analysis, the nouns with high Degree Centrality were figured out, and the changes by year-period were identified. Then, LDA topic analysis was performed for text datasets of six keywords. As a result, the study found that the news articles gave an informed focus on only a handful of issues such as 'poor rural living condition', 'regional or village improvement projects', 'rural tourism promotion projects', and 'other government support projects'. On the other hand, nouns related to virtues and values in the rural landscape were less shown in news articles. These results have become more apparent in recent years. In the topic analysis, 35 topics were identified. 'village development projects', 'rural tourism', and 'urban-rural exchange projects' were appeared repeatedly in several keywords. Among the topics, there are also topics closely related to ruralism such as 'rural landscape conservation', 'eco-friendly rural areas', 'local amenity resources', 'public interest values of agriculture', and 'rural life and communities'. The study presented an image map showing ruralism in South Korea using a network map between all topics and keywords. At the end of the study, implications for Korean rural area policy and research directions were discussed.
본 연구는 청소년의 학습상담 관련 연구 동향을 텍스트 마이닝 방법을 활용하여 얻어진 결과를 살펴보고 후속 연구 방향을 제시하였다. 한국 청소년 고민의 상위 1, 2위는 학습과 진로이다. '학습상담', '학업상담'키워드로 RISS를 통하여 KCI 등재 후보 이상의 학술논문 201편을 대상으로 연구자의 주관과 편견을 최소화할 수 있는 텍스트 마이닝 기법으로 모델링 분석하였다. 학습상담 토픽 결과 상담 경험[토픽1], 집단상담 연구[토픽2], 부모상담[토픽3], 학습기술 프로그램 개발[토픽4]로 나타났다. 학습상담 관련 연구는 정서적인 안정을 위한 상담, 집단상담, 부모상담과 학습기술 프로그램이 개발되고 있다. 청소년의 고민을 해결하기 위한 학습상담은 심리 정서, 부모상담, 학습기술 전문가의 협업을 통한 통합적인 지원을 위한 연구가 지속되기를 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.