• Title/Summary/Keyword: Topdressing

Search Result 50, Processing Time 0.034 seconds

Managing Within-Field Spatial Yield Variation of Rice by Site-Specific Prescription of Panicle Nitrogen Fertilizer

  • Ahn Nguyen Tuan;Shin Jin Chul;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.238-246
    • /
    • 2005
  • Rice yield and protein content have been shown to be highly variable across paddy fields. In order to characterize this spatial variability of rice within a field, two-year experiments were conducted in 2002 and 2003 in a large-scale rice field of $6,600m^2$ In year 2004, an experiment was conducted to know if variable rate treatment (VRT) of N fertilizer, that was prescribed for site-specific management at panicle initiation stage, could reduce spatial variation in yield and protein content of rice while increasing yield compared to conventional uniform N topdressing (UN, 33kg N/ha at PIS) method. VRT nitrogen prescription for each grid was calculated based on the nitrogen (N) uptake (from panicle initiation to harvest) required for target rice protein content of $6.8\%$, natural soil N supply, and recovery of top-dressed N fertilizer. The required N uptake for target rice protein content was calculated from the equations to predict rice yield and protein content from plant growth parameters at panicle initiation stage (PIS) and N uptake from PIS to harvest. This model· equations were developed from the data obtained from the previous two-year experiments. The plant growth parameters for the calculation of the required N were predicted non-destructively by canopy reflectance measurement. Soil N supply for each grid was obtained from the experiment of year 2003, and N recovery was assumed to be $60\%$ according to the previous reports. The prescribed VRT N ranged from 0 to 110kg N/ha with an average of 57kg/ha that was higher than 33 kg/ha of UN. The results showed that VRT application successfully worked not only to reduce spatial variability of rice yield and protein content but also to increase rough rice yield by 960kg/ha. The coefficient of variation (CV) for rice yield and protein content was reduced significantly to $8.1\%$ and $7.1\%$ in VRT from $14.6\%$ and $13.0\%$ in UN, respectively. And also the average protein content of milled rice in VRT showed very similar value of target protein content of $6.8\%$. In conclusion the procedure used in this paper was believed to be reliable and promising method for reducing within-field spatial variability of rice yield and protein content. However, inexpensive, reliable, and fast estimation methods of natural N supply and plant growth and nutrition status should be prepared before this method could be practically used for site-specific crop management in large-scale rice field.

An early warning and decision support system to reduce weather and climate risks in agricultural production

  • Nakagawa, Hiroshi;Ohno, Hiroyuki;Yoshida, Hiroe;Fushimi, Erina;Sasaki, Kaori;Maruyama, Atsushi;Nakano, Satoshi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.303-303
    • /
    • 2017
  • Japanese agriculture has faced to several threats: aging and decrease of farmer population, global competition, and the risk of climate change as well as harsh and variable weather. On the other hands, the number of large scale farms is increasing, because farm lands have been being aggregated to fewer numbers of farms. Cost cutting, development of efficient ways to manage complicatedly scattered farm lands, maintaining yield and quality under variable weather conditions, are required to adapt to changing environments. Information and communications technology (ICT) would contribute to solve such problems and to create innovative technologies. Thus we have been developing an early warning and decision support system to reduce weather and climate risks for rice, wheat and soybean production in Japan. The concept and prototype of the system will be shown. The system consists of a weather data system (Agro-Meteorological Grid Square Data System, AMGSDS), decision support contents where information is automatically created by crop models and delivers information to users via internet. AMGSDS combines JMA's Automated Meteorological Data Acquisition System (AMeDAS) data, numerical weather forecast data and normal values, for all of Japan with about 1km Grid Square throughout years. Our climate-smart system provides information on the prediction of crop phenology, created with weather forecast data and crop phenology models, as an important function. The system also makes recommendations for crop management, such as nitrogen-topdressing, suitable harvest time, water control, pesticide spray. We are also developing methods to perform risk analysis on weather-related damage to crop production. For example, we have developed an algorism to determine the best transplanting date in rice under a given environment, using the results of multi-year simulation, in order to answer the question "when is the best transplanting date to minimize yield loss, to avoid low temperature damage and to avoid high temperature damage?".

  • PDF

Effect of Latex Coated Urea on Nitrogen Use Efficiency and Yield in Drill Seeded Rice (벼 무논골뿌림재배시(栽培時) Latex 입힌 요소의 시용(施用)이 질소(窒素) 이용(利用)과 수량(收量)에 미치는 영향(影響))

  • Yoo, Chul-Hyun;Shin, Bog-Woo;Lee, Sang-Bog;Jeong, Ji-Ho;Han, Sang-Soo;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.2
    • /
    • pp.114-121
    • /
    • 1997
  • Latex Coated Urea(LCU) was compared with ordinary urea under different methods of application in terms of N use efficiency and yield of rice, 1995 and 1996. The study was carried out on Jeonbug silty clay loam, in Honam Agricultural Experiment Station. The fertilizer treatments involved (1) conventional application of urea (44kg N/ha at transplanting, 33kg N/ha at five leaves stage, 33kg N/ha. (4) 55kg N/ha at transplanting and 33kg N/ha as urea at panicle initiation stage, and (5) without N. It was found that by combining LCU(as basal application) and urea(as topdressing at panicle initiation stage), at the rate of 80% of conventional rate with ordinary urea is most effective for the saving of N and increasing the use efficiency of N by rice. It was, however, observed that the efficacy of LCU was affected by the temperature during the growth of rice.

  • PDF

Effects of the Turfgrass Species and Crumb Rubber on Wear Tolerance (내답압성에 미치는 잔디 초종과 고무칩의 영향)

  • Park, Bong-Ju
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.5
    • /
    • pp.40-47
    • /
    • 2003
  • This study examined the improved effect of wear tolerance of warm-season turfgrass overseeded with cool-season turfgrasses. Also, it investigated the improved effect of crumb rubber on wear tolerance and the difference anmong cultivars regarding the wear of Zoysia spp. In wear experiment during summer, the warm-season turfgrass overseed with cool-season turfgrasses had a higher visual rating on the ground than the monostand of Cynodon dactylon. Moreover, in wear experiment in winter, barrenness showed significant progress in the monostand of C. dactylon, while the barrenness did not appear at all in overseeded turf with cool-season turfgrasses. As a result of investigating the bulk density was increased in the monostand of C. dactylon, but not in the overseed turf with cool-season turfgrasses. From the above result, the wear tolerance effcect of turfgrasses appeared year round through warm-season and cool-season turfgrass mixtures. Also, it was found that the method of topdressing crumb rubber on the ground was effective as a physical assistant device alleviating damage of turfgrasses. The possibility of improving wear tolerance was accepted by adding soil amendments such as perlite, pamis, etc., in order to promote the growth of turfgrass.

Optimum N Fertilization at Panicle Initiation Stage on Ridge Direct Seeding on Dry Paddy of Rice as an Irrigation Water-Saving Cultural System (벼 휴립건답직파 절수재배에 알맞은 질소 수비량)

  • 최원영;박홍규;이기상;김상수;이재길;김순철;최선영
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.177-184
    • /
    • 2001
  • This study was conducted to identify the optimum nitrogen (N) fertilization at panicle initiation stage on ridge direct seeding on dry paddy of rice. During 1999~2000, a series of experiments was carried out at field (Chonbuk series) of the National Honam Agricultural Experiment Station, RDA using Dongjinbyeo. Plants were taller, and leaf area index and top dry weight increased with more N fertilization at panicle initiation stage. Photosynthetic rate of heading stage was higher at higher amounts of N fertilization at panicle initiation stage, especially in 6 kg/10a compared with 10 kg/10a seeding rate. Lodging index and its related traits did not significantly differ under different rates of N fertilization at panicle initiation stage. N uptake of the rice plant increased as more N fertilization at panicle initiation stage. N use efficiency was highest under the standard topdressing rate at 6 kg/10a seeding rate. Panicle number per m$^2$ increased with more topdressed N, but ripened grain rate and 1,000-grain weight of brown rice did not differ with an increase in topdressed N. Milled rice yield was 6% higher in the 6 kg/10a seeding rate and 13% higher in the 10 kg/10a seeding rate at 50% more topdressed N compared with 4.8 kg/10a N fertilization at panicle initiation stage of 6 kg/10a seeding rate.

  • PDF

Improvement of Nitrogen Efficiency by N Application at Early Tillering Stage in Direct-Seeded Rice

  • Seo Jun-Han;Lee Ho-Jin;Lee Seung-Hun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.1
    • /
    • pp.16-21
    • /
    • 2005
  • This study was conducted to establish the elaborate nitrogen fertilization method to enhance N use efficiency in direct-seeded rice on flooded paddy. The nitrogen uptake by rice plants was insignificant until 25 days after seeding, and increased gradually thereafter. During this early growth stage, rice plants absorbed only the $4\%$ of basal applied N, while the $45\%$ of N fertilizer remained in the paddy soil. The absorption of basal N by rice plants was almost completed at 46 days after application. Nitrogen top-dressed at 5-leaf stage was well matched to crop nutrient demand, so it could be absorbed so actively in 8days after application. As a result, we could cut down the amount of N fertilizer to $36\%$ of the basal N level without significant difference in yield. Plant recoveries of fertilizer $^{15}N$ applied with different application timings were $7.8\%$ for basal, $9.4\%$ for 5-leaf stage, $17.1\%$ for tillering stage, and $23.4\%$ for panicle initiation stage, respectively. When urea was applied with nitrogen fertilization practice based on basal incorporation (BN), plant recovery of $^{15}N$ at harvest was $31.0\%$, which was originated from $13.7\%$ for grain, and $21.3\%$ of the fertilizer $^{15}N$ remained in the soil, and the rest could be uncounted. Plant recovery of fertilizer $^{15}N$ applied with nitrogen fertilization practice based on topdressing at 5-leaf stage (TN), where N rate was reduced by $18\%$ compared with BN, was $35.1\%$ (grain $15.6\%$), and $19.9\%$ of the fertilizer $^{15}N$ remained in the soil, and the rest could be uncounted. TN showed a higher $^{15}N$ recovery than BN because it was to apply N fertilizer at a time to well meet the demand of rice plant direct-seeded on flooded paddy. We concluded that TN would be the nitrogen fertilization method to enhance N use efficiency in direct-seeded rice on flooded paddy.

SPATIAL YIELD VARIABILITY AND SITE-SPECIFIC NITROGEN PRESCRIPTION FOR THE IMPROVED YIELD AND GRAIN QUALITY OF RICE

  • Lee Byun-Woo;Nguyen Tuan Ahn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2005.08a
    • /
    • pp.57-74
    • /
    • 2005
  • Rice yield and protein content have been shown to be highly variable across paddy fields. In order to characterize this spatial variability of rice within a field, the two-year experiments were conducted in 2002 and 2003 in a large-scale rice field of $6,600m^2$ In year 2004, an experiment was conducted to know if prescribed N for site-specific fertilizer management at panicle initiation stage (VRT) could reduce spatial variation in yield and protein content of rice while increasing yield compared to conventional uniform N topdressing (UN, ,33 kg N/ha at PIS) method. The trial field was subdivided into two parts and each part was subjected to UN and VRT treatment. Each part was schematically divided in $10\times10m$ grids for growth and yield measurement or VRT treatment. VRT nitrogen prescription for each grid was calculated based on the nitrogen (N) uptake (from panicle initiation to harvest) required for target rice protein content of $6.8\%$, natural soil N supply, and recovery of top-dressed N fertilizer. The required N uptake for target rice protein content was calculated from the equations to predict rice yield and protein content from plant growth parameters at panicle initiation stage (PIS) and N uptake from PIS to harvest. This model equations were developed from the data obtained from the previous two-year experiments. The plant growth parameters for this calculation were predicted non-destructively by canopy reflectance measurement. Soil N supply for each grid was obtained from the experiment of year 2003, and N recovery was assumed to be $60\%$ according to the previous reports. The prescribed VRT N ranged from 0 to 110kg N/ha with average of 57kg/ha that was higher than 33kg/ha of UN. The results showed that VRT application successfully worked not only to reduce spatial variability of rice yield and protein content but also to increase rough rice yield by 960kg/ha. The coefficient of variation (CV) for rice yield and protein content was reduced significantly to $8.1\%\;and\;7.1\%$ in VRT from $14.6\%\;and\;13.0\%$ in UN, respectively. And also the average protein content of milled rice in VRT showed very similar value of target protein content of $6.8\%$. Although N use efficiency of VRT compared to UN was not quantified due to lack of no N control treatment, the procedure used in this paper for VRT estimation was believed to be reliable and promising method for managing within-field spatial variability of yield and protein content. The method should be received further study before it could be practically used for site-specific crop management in large-scale rice field.

  • PDF

Effect of N Application Rate on Fixation and Transfer from Vetch to Barley in Mixed Stands. (질소시용수준이 베치-보리 혼파 사초의 질소고정 및 베치에서 보리로 질소이동에 미치는 영향)

  • Lee Hyo Won;Kim Won Ho;Park Hyung Soo;Ko Han Jong;Kim Su Gon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • With recent interest organic farming the use of legumes including vetch and clover to provide N to adjacent crops is increasing in Korea. In the present studies, we conducted a trial to investigate the effects of the application of N rate on nitrogen fixation and transfer from vetch to barley in mixed stands. The experiment was arranged in a randomized complete block design with three replications. Four different N rates(0, 75, 113 and 150/ha) was used and vetch+barley was broadcasted manually on 1.5 $\times$2 m plot in Oct. 2001. Half of urea and K$_{2}O, 200 Phosphate and 75 kg potash per ha were applied as basal dressing md half of N md 75 potash were used for topdressing to soil surface on MarctL 2002. The equivalent of 1kg ha$^{-1}$ at($^{15}$NH$_{4}$)$_{2}$SO$_{4}$ solution at 99.8 atom $\%$$^{15}$N excess was applied to the microplot in mid April. Forage was harvested from each plot at ground level and separated into barley and vetch. Total N content and It values of samples were determined using a continuous flow stable isotope ratio mass spectrometry(IsoPrime-EA. Micromass, UK.). The percentage of legume H fixed from atmospheric N2 were 95.0, 93.8, 94.4 and $84.8\%$ with increment of N levels. The percentage of N transfer from vetch to barley by N-difference method with increment of N fertilizer were from 58 to$49\%$ while 39 to $23\%$ in $^{15}$N-dilution method. The amount of transfer from vetch to barley were 87 to 68 kg/ ha with N level by N-difference moth여 and 58 to -56/ha with N application levels by $^{15}$N dilution method. The amount of nitrogen fixation per ha were from 150 kg / ha to 219 kg / ha by different method, but on the other side 49 to 105kg/ha by N$^{15}$-dilution.

Evaluation of Preplant Optimum Application Rate of Mixed Expeller Cake in Chinese Cabbage Cultivation at the Field (노지 배추 재배시 혼합유박의 밑거름 적정 시용량 평가)

  • Kim, Seong Heon;Hwang, Hyun Young;Park, Seong Jin;Kim, Seok Cheol;Kim, Myung Sook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.41-48
    • /
    • 2019
  • Mixed expeller cake has been one of soil management to improve crop productivity and soil fertility. But, there was a little information on optimum mixed expeller cake application for chinese cabbage. So, in this study, we were evaluated the preplant optimum application rate of mixed expeller cake(MEC) in chinese cabbage cultivation at field. Treatments consist of control, inorganic fertilizer($N-P_2O_5-K_2O$ : $320-78-198kg\;ha^{-1}$), MEC(50, 100, 150% on preplant application standard $110kg\;ha^{-1}$ as N, topdressing : $210kg\;ha^{-1}$ as N). In results, growth characteristics was not significantly different. But, yield was increased when application rate was increased. And MEC 150% treatment showed similar yield as inorganic treatment. There was no significant difference in soil pH, OM, $Av.P_2O_5$, $NH_4-N$ and Ex.K. But, soil EC and $NO_3-N$ were increased when MEC level increased. As a results, MEC 150% can be proposed as preplant optimum application rate of MEC from this study. But abuse of MEC and long-term using caused about salt accumulation in soil.

Effects of Aluminum Sulfate Addition on Six-Week-Old Broiler Performance and Nitrogen Contents in Litter at the Sixth Week (Aluminum Sulfate 처리가 6주령 육계생산 능력 및 깔짚 내의 질소 함량에 미치는 영향)

  • 최인학;남기홍
    • Korean Journal of Poultry Science
    • /
    • v.29 no.4
    • /
    • pp.265-270
    • /
    • 2002
  • This study was conducted to determine the effect of aluminum sulfate[Al$_2$(S0$_4$)$_3$$.$14H$_2$O], commonly referred to as ALUM, addition to broiler litter on 3 and 6 week old broiler performance and the nitrogen content of the litter at 6 weeks of age. The two treatment groups were 134 identical diets with the same protein levels, but one group(T$_1$) had ALUM added as a top dressing to the litter at a rate of 200 g ALUM / kg of rice bran, while T$_2$ did not have ALUM added to the litter. Feed consumption for T$_1$ was higher in the 22 to 42 day-old and 0 to 42 day-old periods (P<0.05). Body weight in T$_1$ was also higher in the 0 to 42 day -old period (P<0.0l). There was no difference, however, in the feed : gain ratio between T$_1$ and T$_2$ During the first 5 weeks, T$_1$ had significantly less(P<0.05 or 0.01) ammonia emission from the litter than T$_2$ but at 6 weeks there was no difference in ammonia concentration between the two groups. At 6 weeks, T$_1$ had a lower litter pH than Ta (P<0.05) and total Kjeldahl nitrogen(TKN) was higher far T$_1$ than T$_2$ (P<0.05). However,71 did not show any difference from T$_2$ in the content of NH4-N and NO3-N. In summary, the addition of ALUM to broiler litter improved broiler performance at 6 weeks, while increasing nitrogen content from the litter used as the nitrogen fertilizer although ammonia emission was increased in T$_1$ at 6 weeks.