• 제목/요약/키워드: Top-emitting OLEDs

검색결과 32건 처리시간 0.031초

Correlation between optimized thicknesses of capping layer and thin metal electrode for efficient top-emitting blue organic light-emitting diodes

  • Hyunsu Cho;Chul Woong Joo;Byoung-Hwa Kwon;Chan-mo Kang;Sukyung Choi;Jin Wook Sin
    • ETRI Journal
    • /
    • 제45권6호
    • /
    • pp.1056-1064
    • /
    • 2023
  • The optical properties of the materials composing organic light-emitting diodes (OLEDs) are considered when designing the optical structure of OLEDs. Optical design is related to the optical properties, such as the efficiency, emission spectra, and color coordinates of OLED devices because of the microcavity effect in top-emitting OLEDs. In this study, the properties of top-emitting blue OLEDs were optimized by adjusting the thicknesses of the thin metal layer and capping layer (CPL). Deep blue emission was achieved in an OLED structure with a second cavity length, even when the transmittance of the thin metal layer was high. The thin metal film thickness ranges applicable to OLEDs with a second microcavity structure are wide. Instead, the thickness of the thin metal layer determines the optimized thickness of the CPL for high efficiency. A thinner metal layer means that higher efficiency can be obtained in OLED devices with a second microcavity structure. In addition, OLEDs with a thinner metal layer showed less color change as a function of the viewing angle.

Electromagnetic Modeling of OLEDs and Its Applications to Advanced OLEDs

  • Wu, Chung-Chih;Lin, Chun-Liang;Cho, Ting-Yi;Yang, Chih-Jen;Lu, Yin-Jui
    • Journal of Information Display
    • /
    • 제7권4호
    • /
    • pp.5-8
    • /
    • 2006
  • The optical structures and rigorous electromagnetic modeling of OLEDs will be discussed of first and then their applications in analyses and designs of various advanced OLED structures, e.g. microcavity OLEDs, tandem OLEDs and top-emitting OLEDs etc., will be reported.

High performance top-emitting OLEDs with copper iodide-doped hole injection layer

  • Lee, Jae-Hyun;Leem, Dong-Seok;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.492-495
    • /
    • 2008
  • Efficient top-emitting organic light-emitting diodes were fabricated using copper iodide (CuI) doped NPB as a p-doped hole injection layer to improve hole injection from a silver bottom electrode. The enhanced hole injection is originated from the formation of the charge transfer complex between CuI and NPB. The devices result in high efficiency of 69 cd/A with almost Lambertian emission pattern.

  • PDF

Microcavity Effect of Top-emission Organic Light-emitting Diodes Using Aluminum Cathode and Anode

  • Lee, Chang-Jun;Park, Young-Il;Kwon, Jang-Hyuk;Park, Jong-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권9호
    • /
    • pp.1344-1346
    • /
    • 2005
  • We report microcavity effect of top emission organic light-emitting diodes (OLEDs) by using Al cathode and anode, which are feasible for not only top emission EL and angle dependant effects but facile evaporation process without ion sputtering. The device in case of $Alq_3$ green emission showed largely shifted EL maximum wavelength as 650 nm maximum emission. It was also observed that detection angle causes different EL maximum wavelength and different CIE values in R, G, B color emission. As a result, the green device using $Alq_3$ emission showed 650 nm emission ($0^{\circ}$) to 576 nm emission ($90^{\circ}$) as detection angle changed. We believe that these phenomena can be also explained with microcavity effect which depends on the different length of light path caused by detection angle.

마이크로캐비티 OLED의 전극과 유기물층 두께가 발광 스펙트럼에 미치는 영향 (Influence of Electrode and Thickness of Organic Layer to the Emission Spectra in Microcavity Organic Light Emitting Diodes)

  • 김창교;한가람;김일영;홍진수
    • 한국정밀공학회지
    • /
    • 제29권11호
    • /
    • pp.1183-1189
    • /
    • 2012
  • Organic light-emitting diodes (OLEDs) using microcavity effect have attracted great attention because they can reduce the width of emission spectra from organic materials, and enhance brightness from the same material. We demonstrate the simulation results of the radiation properties from top-emitting organic light-emitting diodes (TE-OLEDs) with microcavity structures based on the general electromagnetic theory. Organic materials such as N,N'-di (naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) ($Alq_3$) as emitting and electron transporting layer are used to form the OLEDs. The organic materials were sandwiched between anode such as Ni or Au and cathode such as Al, Ag, or Al:Ag. The devices were characterized with electroluminescence phenomenon. We confirmed that the simulation results are consistent with experimental results.

Highly Efficient Top-Emitting Electrophosphorescent Organic Light-Emitting Devices

  • Lu, Min-Hao M.;Weaver, Michael S.;Zhou, Theodore X.;Rothman, Mark;Kwong, Raymond C.;Hack, Mike;Brown, Julie J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.90-93
    • /
    • 2002
  • We present both a theoretical analysis and experimental data to show that electrophosphorescent top-emitting organic light emitting-devices (TOLEDs) with a reflective anode and a transparent cathode can be more efficient than the equivalent state-of-the-art bottom-emitting electrophosphorescent OLEDs (PHOLEDs$^{TM}$). The lifetime of devices with transparent cathodes are shown to approach that of the corresponding bottom-emitting devices.

  • PDF

Synchrotron radiation photoelectron spectroscopy study of oxygen doping effect by oxygen plasma treatment to inverted top emitting organic light emitting diodes

  • Hong, Ki-Hyon;Kim, Ki-Soo;Kim, Sung-Jun;Choi, Ho-Won;Tak, Yoon-Heung;Lee, Jong-Lam
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.118-120
    • /
    • 2009
  • We reported that the evidence of oxygen doping to copper-phthalocyanine (CuPc) by $O_2$-plasma treatment to Au electrode of inverted top emitting organic light emitting diodes (ITOLEDs). The operation voltage of OLEDs at 150 mA/$cm^2$ decreased from 16.1 to 10.3 V as oxygen atoms indiffued to CuPc layer using $O_2$-plasma. Synchrotron radiation photoelectron spectroscopy results showed that a new bond of Cu-O appeared and the energy difference between the highest occupied molecular orbital and $E_F$ is lowered by 0.20 eV after plasma treatment. Thus the hole injection barrier was lowered, reducing the turn-on voltage and increasing the quantum efficiency of OLEDs.

  • PDF

Long-lifetime Green Phosphorescent OLEDs for Low Power Displays

  • Weaver, Michael S.;Adamovich, Vadim I.;Xia, Sean C.;Fiordeliso, James J.;Kwong, Raymond C.;Brown, Julie J.;Lee, Kwan-Hee;Lim, Choon-Woo;Kim, Sung-Chul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.38-41
    • /
    • 2009
  • We demonstrate a new commercial green phosphorescent organic light emitting device (OLED) in a bottom emission device and top emission microcavity. The bottom and top emitting phosphorescent OLEDs (PHOLED$^{TM}$s) had luminance efficiencies of 60cd/A and 137cd/A respectively, at a luminance of 1,000cd/$m^2$. The top emission microcavity was close to 1953 NTSC color requirements with 1931 CIE color coordinates of 0.231, 0.718. A record green PHOLED lifetime of >3,500hrs to LT95 from 4000cd/$m^2$ is demonstrated for the microcavity device.

  • PDF

Theoretical Modeling of the Internal Power Flow and Absorption Loss of the Air Mode Based on the Proposed Poynting Vector Analysis in Top-emitting Organic Light-emitting Diodes

  • Kim, Jiyong;Kim, Jungho;Kim, Kyoung-Youm
    • Journal of the Korean Physical Society
    • /
    • 제73권11호
    • /
    • pp.1663-1674
    • /
    • 2018
  • We propose the Poynting vector analysis of the air mode in a top-emitting organic light-emitting diode (OLED) by combining the transfer matrix method and dipole source term. The spatial profiles of the time-averaged optical power flow of the air mode are calculated inside and outside the multilayer structure of the OLED with respect to the thickness of the semi-transparent top cathode and capping layer (CPL). We elucidate how the micro-cavity effect controlled by the thickness variation of the semi-transparent top cathode or CPL affects the internal optical power and absorption loss inside the OLED multilayer and the external optical power coupled into the air. When the calculated absorption loss and external power obtained by the proposed Poynting vector and currently-used point dipole models are compared, two calculation results are identical, which demonstrates the validity of the two models.

박스 캐소드 스퍼터로 성장시킨 전면 발광 OLED용 상부 InZnO 캐소드 박막의 전기적, 광학적, 구조적 특성 연구 (Electrical, Optical and Structural Properties of Indium Zinc Oxide Top Cathode Grown by Box Cathode Sputtering for Top-emitting OLEDs)

  • 배정혁;문종민;김한기
    • 한국전기전자재료학회논문지
    • /
    • 제19권5호
    • /
    • pp.442-449
    • /
    • 2006
  • Electrical, optical, and structural properties of indium zinc oxide (IZO) films grown by a box cathode sputtering (BCS) were investigated as a function of oxygen flow ratio. A sheet resistance of $42.6{\Omega}/{\Box}$, average transmittance above 88% in visible range, and root mean spare roughness of $2.7{\AA}$ were obtained even in the IZO layers grown at room temperature. In addition, it is shown that electrical characteristics of the top-emitting organic light emitting diodes (TOLEDs) with the BCS grown-IZO top cathode layer is better than that of TOLEDs with DC sputter grown IZO top cathode, due to absence of plasma damage effect. Furthermore the effects of oxygen flow ratio in IZO films are investigated, based on x-ray photoelectron spectroscopy (XPS), ultra violet/visible (UV/VIS) spectro-meter, scanning electron microscopy (SEM), and atomic force microscopy (AFM) analysis results.