DOI QR코드

DOI QR Code

Influence of Electrode and Thickness of Organic Layer to the Emission Spectra in Microcavity Organic Light Emitting Diodes

마이크로캐비티 OLED의 전극과 유기물층 두께가 발광 스펙트럼에 미치는 영향

  • Kim, Chang-Kyo (Department of Information and Electronics Engineering, Soonchunhyang Univ.) ;
  • Han, Ga-Ram (Department of Information and Electronics Engineering, Soonchunhyang Univ.) ;
  • Kim, Il-Yeong (Department of Information and Electronics Engineering, Soonchunhyang Univ.) ;
  • Hong, Chin-Soo (Department of Electronic Physics, Soonchunhyang Univ.)
  • 김창교 (순천향대학교 전자정보공학과) ;
  • 한가람 (순천향대학교 전자정보공학과) ;
  • 김일영 (순천향대학교 전자정보공학과) ;
  • 홍진수 (순천향대학교 전자물리학과)
  • Received : 2011.12.30
  • Accepted : 2012.10.06
  • Published : 2012.11.01

Abstract

Organic light-emitting diodes (OLEDs) using microcavity effect have attracted great attention because they can reduce the width of emission spectra from organic materials, and enhance brightness from the same material. We demonstrate the simulation results of the radiation properties from top-emitting organic light-emitting diodes (TE-OLEDs) with microcavity structures based on the general electromagnetic theory. Organic materials such as N,N'-di (naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) ($Alq_3$) as emitting and electron transporting layer are used to form the OLEDs. The organic materials were sandwiched between anode such as Ni or Au and cathode such as Al, Ag, or Al:Ag. The devices were characterized with electroluminescence phenomenon. We confirmed that the simulation results are consistent with experimental results.

Keywords

References

  1. Tang, C. W. and VanSlyke, S. A., "Organic electroluminescent diodes," Appl. Phys. Lett., Vol. 51, pp. 913-915, 1987. https://doi.org/10.1063/1.98799
  2. Tang, C. W., VanSlyke, S. A., and Chen, C. H., "Electroluminescence of doped organic thin films," J. Appl. Phys., Vol. 65, pp. 3610-3616, 1989. https://doi.org/10.1063/1.343409
  3. Meng, Z. and Wong, M., "Active-matrix organic light-emitting diode displays realized using metalinduced unilaterally crystallized polycrystalline silicon thin-film transistors," IEEE Trans. Electron Devices, Vol. 49, No. 6, pp. 991-996, 2002. https://doi.org/10.1109/TED.2002.1003718
  4. Kijima, Y., Asai, N., Kishii, N., and Tamura, S., "RGB luminescence from passive-matrix organic LED's," IEEE Trans. Electron Devices, Vol. 44, No. 8, pp. 1222-1228, 1997. https://doi.org/10.1109/16.605458
  5. Hong, Y., Nahm, J.-Y., and Kanicki, J., "100 pi 4-a-Si:H TFTs active-matrix organic polymer lightemitting display," IEEE J. Sci. Topics Quantum Electron., Vol. 10, No. 1, pp. 16-25, 2004. https://doi.org/10.1109/JSTQE.2004.824075
  6. Jackson, T. N., Lin, Y.-Y., Gundlach, D. J., and Klauk, H., "Organic thin-film transistors for organic light-emitting flat-panel display backplanes," IEEE J. Sci. Topics Quantum Electron., Vol. 4, No. 1, pp. 100-104, 1998. https://doi.org/10.1109/2944.669475
  7. Peng, H., Sun, J., Zhu, X., Yu, X., Wong, M., and Kwok, H.-S., "High efficiency microcavity topemitting organic light-emitting diodes using silver anode," Appl. Phys. Lett., Vol. 88, No. 7, Paper No. 73517, 2006.
  8. Wu, C. C., Hsieh, P. Y., Lin, C. L., and Chiang, H. H., "Methodology for optimizing viewing characteristics of top-emitting organic light-emitting devices," Appl. Phys. Lett., Vol. 84, pp. 3966-3968, 2004. https://doi.org/10.1063/1.1745107
  9. Chang, C.-H., Cheng, H.-C., Lu, Y.-J., Tien, K.-C., Lin, H.-W., Lin, C.-L., Yang, C.-J., and Wu, C.-C., "Enhancing color gamut of white OLED displays by using microcavity green pixels," Org. Electron., Vol. 11, pp. 247-254, 2010. https://doi.org/10.1016/j.orgel.2009.11.002
  10. Chang, P. C. Y., Walker, J. G., and Hopcraft, K. I., "Ray tracing in absorbing media," J. Quant. Spec. Rad. Transfer, Vol. 96, pp. 327-341, 2005. https://doi.org/10.1016/j.jqsrt.2005.01.001
  11. Centurioni, E., "Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers," Appl. Opt., Vol. 44, pp. 7532-7539, 2005. https://doi.org/10.1364/AO.44.007532
  12. Katsidis, C., Katsidis, C., and Siapkas, D. I., "General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interface," Appl. Opt., Vol. 41, pp. 3979-3987, 2002.
  13. Bathelt, R., Buchhauser, D., Garditz, C., Paetzold, R., and Wellmann, P., "Light extraction from OLEDs for lighting applications through light scattering," Organ. Electron., Vol. 8, pp. 293-299, 2007. https://doi.org/10.1016/j.orgel.2006.11.003
  14. Lide, D. R., "Handbook of Chemistry and Physics," CRC Press, pp. 12-133-12-150, 2004.
  15. Mishra, A., Periasamy, N., Patankar, M. P., and Narasimhan, K. L., "Synthesis and characterization of soluble aluminum complex dyes based on 5- substituted-8-hydroxyquinoline derivatives for OLED applications," Dyes and Pigments, Vol. 66, pp. 89-97, 2005. https://doi.org/10.1016/j.dyepig.2004.09.004
  16. Himcinschi, C., Meyer, N., Hartmann, S., Gersdorff, M., Friedrich, M., Johannes, H.-H., Kowalsky, W., Schwambera, M., Strauch, G., Heuken, M., and Zahn, D. R. T., "Spectroscopic ellipsometric characterization of organic films obtained via organic vapor phase deposition," Appl. Phys. A, Vol. 80, pp. 551-555, 2005. https://doi.org/10.1007/s00339-004-2973-7
  17. Himcinschi, C., Hartmann, S., Janssen, A., Meyer, N., Friedrich, M., Kowalsky, W., Zahn, D. R. T., and Heuken, M., "Thin organic heterostructures deposited via organic vapor phase deposition: spectroscopic ellipsometry characterization," J. Crystal Growth, Vol. 275, pp. e1035-e1040, 2005. https://doi.org/10.1016/j.jcrysgro.2004.11.127
  18. Masenelli, B., Gagnaire, A., Berthelot, L., Tardy, J., and Joseph, J., "Controlled spontaneous emission of a tris (8-hydroxyquinoline) aluminum layer in a microcavity," J. Appl. Phys., Vol. 85, pp. 3032-3037, 1999. https://doi.org/10.1063/1.369639
  19. Djurišic, A. B., Kwong, C. Y., Guo, W. L., Lau, T. W., Li, E. H., Liu, Z. T., Kwok, H. S., Lam, L. S. M., and Chan, W. K., "Spectroscopic ellipsometry of the optical functions of tris (8-hydroxyquinoline) aluminum ($Alq_{3}$)," Thin Solid Films, Vol. 416, pp. 233-241, 2002. https://doi.org/10.1016/S0040-6090(02)00616-8
  20. Kim, C. H., Kim, M. S., You, H. I., Choi, B.-O., Lee, S.-H., and Kim, D. S., "Roll-to-Roll Contact Printer with Multiple Printing Methods," J. of the KSPE, Vol. 27, No. 9, pp. 7-10, 2010.