• Title/Summary/Keyword: Top-down force

Search Result 45, Processing Time 0.027 seconds

Velocity Control of Magnet-Type Automatic Pipe Cutting Machine and Measurement of Slipping Using MEMS-Type Accelerometer (자석식 자동 파이프 절단기의 정속제어와 MEMS 형 가속도계를 이용한 미끄럼 측정)

  • 김국환;이성환;임성수;이순걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.475-478
    • /
    • 2004
  • In this paper, a magnet-type automatic pipe cutting machine that binds itself to the surface of the pipe using magnetic force and executes unmanned cutting process is proposed. During pipe cutting process when the machine moves around the pipe laid vertical to the gravitational field, the gravity acting on the pipe cutting machine widely varies as the position of the machine varies. That is, with same driving force from the driving motor the cutting machine moves faster when it climbs down the surface of the pipe and moves slower when it climbs up to the top of the pipe. To maintain a constant velocity of the pipe cutting machine and improve the cutting quality, the authors adopted a conventional PID controller with a feedforward effort designed based on the encoder measurement of the driving motor. It is, however, impossible for the encoder at the motor to measure the absolute position and consequently the absolute velocity of the cutting machine in the case where the slip between the surface of the pipe and wheel of the cutting machine is not negligible. As an attempt to obtain a better estimation of the absolution angular position/velocity of the machine the authors proposes the use of the MEMS-type accelerometer which can measure static acceleration as well as dynamic acceleration. The estimated angular velocity of the cutting machine using the MEMS-type accelerometer measurement is experimentally obtained and it indicates the significant slipping of the machine during the cutting process.

  • PDF

Development on mechanism for opening sensitivity quality improvement of oven range door using nonlinear cam and spring (비선형 캠과 스프링을 이용한 오븐 렌지 도어의 열림 감성 품질 향상 메커니즘 개발)

  • Kim, Hwi-Yeon;Yun, Jae-Deuk;Jung, Yoong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.616-624
    • /
    • 2014
  • Most of oven range doors are opened from top to down. Feeling of door in case of home appliances including oven ranges affects the quality of product. The major factors to evaluate the feeling quality are opening force, closing force, and bouncing effect happened when the door is opened completely. If opening and closing forces become large, consumers may have complaints. If the bouncing effect becomes large, the impact can cause the body as well as the door to damage. Opening and closing forces, and bouncing effect must be minimized to improve the feeling quality. In this study, the mechanism which improves the existed dual compressive spring and cam structure is suggested by using nonlinear cam and spring. After the nonlinear cam is designed and manufactured for the suggested mechanism, this cam is confirmed to become more superior than the existed one by applying it to the practical oven range.

A Study on the Integrated Control and Safety Management System for 9% Ni Steel LNG Storage Tank (9% 니켈강재식 LNG 저장탱크용 통합제어안전관리시스템에 관한 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.5
    • /
    • pp.13-18
    • /
    • 2010
  • This paper presents the development of an integrated control and safety management system for 9% nickel steel LNG storage tank. The new system added the measuring equipment of pressure, displacement and force compared to the conventional measurement and control system. The measured data has simultaneously been processed by integrating and analyzing with new control equipments and safety management systems. The integrated control and safety management system, which may increase a safety and efficiency of a super-large full containment LNG storage tank, added additional pressure gauges and new displacement/force sensors at the outer side wall and a welding zone of a stiffener and top girder of an inner tank, and the inner side wall of a corner protection tank. The displacement and force sensors may provide failure clues of 9% nickel steel structures such as an inner tank and a corner protection, and a LNG leakage from the inner tank. The conventional leak sensor may not provide proper information on 9% nickel steel tank fracture even though LNG is leaked until the leak detector, which is placed at the insulation area between an inner tank and a corner protection tank, sends a warning signal. Thus, the new integrated control and safety management system is to collect and analyze the temperature, pressure, displacement, force, and LNG density, which are related to the tank system safety and leakage control from the inner tank. The digital data are also measured from control systems such as displacement and force of 9% nickel steel tank safety, LNG level and density, cool-down process, leakage, and pressure controls.

Development of an Intelligent Ankle Assistive Robot (지능형 발목 근력 보조 로봇의 개발)

  • Jeong, Woo-Chul;Kim, Chang-Soon;Park, Jin-Yong;Hyun, Jung-Guen;Kim, Jung-Yup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.538-546
    • /
    • 2015
  • This paper describes an intelligent ankle assistive robot which provides assistive power to reduce ankle torque based on an analysis of ankle motion and muscle patterns during walking on level and sloped floors. The developed robot can assist ankle muscle power by driving an electric geared motor at the exact timing through the use of an accelerometer that detects gait phase and period, and a potentiometer to measure floor slope angle. A simple muscle assistive link mechanism is proposed to convert the motor torque into the foot assistive force. In particular, this mechanism doesn't restrain the wearer's ankle joint; hence, there is no danger of injury if the motor malfunctions. During walking, the link mechanism pushes down the top of the foot to assist the ankle torque, and it can also lift the foot by inversely driving the linkage, so this robot is useful for foot drop patients. The developed robot and control algorithm are experimentally verified through walking experiments and EMG (Electromyography) measurements.

Assessment of Applicability of Pretentioned Soil-Nail Systems with in-situ monitoring (현장 계측을 통한 프리텐션 쏘일네일링 시스템의 적용성 평가)

  • Lee, Hyuk-Jin;Ahn, Kwang-Kuk;Kim, Hong-Taek;Bang, Yoon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.320-329
    • /
    • 2005
  • The use of diverse methods for the retaining system has been continuously increased in order to maintain the stability during excavation. However, ground anchor system occasionally may have the restriction in urban excavation sites nearby the existing structures because of space limitation. In this case, soil nailing system with relatively short length of nails could be efficiently useful as an alternative method. The general soil nailing support system, however, may result in excessive deformations particularly in excavating the zone of weak soils or nearby the existing structures. Therefore, applying the pretension force to the soil nails then could play important roles to reduce deformations mainly in an upper part of the nailed-soil excavation system as well as to improve the local slope stability. In this study, a newly modified soil nailing technology named as the PSN(Pretention Soil Nailing) is developed to reduce both facing displacements and ground surface settlements during top-down excavation process as well as to increase the global slope stability. Up to now, the PSN system has been investigated mainly focusing on an establishment of the design procedure. In the present study, the field tests including pull-out tests were fulfilled to investigate the behavior of characteristics for PSN system. All results of tests were also analyzed to provide a fundamental and efficient design.

  • PDF

Stability Analysis and Application Evaluation of the Pretensioned Soil Nailing Systems (프리텐션 쏘일네일링 시스템의 안정해석 및 적용성 평가)

  • Kim, Hong-Taek;Park, Si-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.783-790
    • /
    • 2004
  • In this study, a newly modified soil nailing technology named as the PSN(pretensioned soil nailing) system, is developed to reduce both facing displacements and ground surface settlements in top-down excavation process as well as to increase the global stability. Up to now, the PSN system has been investigated mainly focusing on an establishment of the design procedure. In the present study, the analytical procedure and design technique are proposed to evaluate maximum pretension force and stability of the PSN system. Also proposed arc techniques to determine the required thickness of a shotcrete facing and to estimate probability of a failure against the punching shear. Based on the proposed procedure and technique, effects of the radius of a influence circle and dilatancy angle on the thickness of a shotcrete facing, bonded length and safety factors arc analyzed. In addition, effects of the reduction of deformations expected by pretensioning of the soil nails are examined in detail throughout an illustrative example and $FLAC^{2D}$ program analysis. And a numerical approach is further made to determine a postulated failure surface as well as a minimum safety factor of the proposed PSN system using the shear strength reduction technique with the $FLAC^{2D}$ program. Global minimum safety factors and local safety factors at various excavation stages computed in case of the PSN system arc analyzed throughout comparisons with the results expected in case of the general soil nailing system. The efficiency of the PSN system is also dealt with by analyzing the wall-facing deformations and the adjacent ground surface settlements.

  • PDF

Study on Mechanisms and Orographic Effect for the Springtime Downslope Windstorm over the Yeongdong Region (봄철 영동 지역 국지 하강풍 메커니즘과 지형 효과에 대한 연구)

  • Kim, Jung-Hoon;Chung, Il-Ung
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.67-83
    • /
    • 2006
  • The statistical analysis for the springtime windstorm in Korea shows that Yeongdong region has the highest occurrence frequency during recent 10 years. The objective of this study is to find possible mechanisms for the downslope windstorm formation in the Yeongdong region by using a mesoscale numerical model, WRF. Dynamical process, wave breaking (hereafter WB), is qualitatively investigated as the candidate mechanism for a windstorm event occurred in 5 April, 2005. WB is developed in upper troposphere downstream, since stable air is lifted by the Taebaek mountain. This process can cause and maintain the severe downslope windstorm by drawing the upper flow down to the surface. And the intensified downslope wind leads the hydraulic jump (hereafter HJ) in downstream region. Froude numbers at Chuncheon (upslope side), Seorak Mountain (crest), Yangyang (lee side), and the East Sea (distant downstream position) are estimated by about 0.4, 1.0, 1.6, and 0.6, respectively. This result implies that the accelerated and supercritical (Fr>1) flow adjusts to the ambient subcritical (Fr<1) conditions in the turbulent HJ. In addition, we find the formation of upstream inversion near top level of the mountain cause the intensification of HJ. Experiments to examine the orographic effect on the mechanisms suggest that the magnitudes of WB and HJ are larger in the experiment of higher topography, but there is no significant difference of windstorm magnitude among the experiments. Another important result from these sensitivity experiments is that the intensity of downslope windstorm strongly depends on the magnitude of upper (2~4 km) wind in upstream side.

Experimental Study on the Performance Characteristics of Geothermal DTH Hammer with Foot Valve (풋 밸브가 적용된 지열 천공 DTH 해머의 성능 특성에 대한 실험적 연구)

  • Cho, Min Jae;Sim, Jung-Bo;Kim, Young Won
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.1
    • /
    • pp.14-22
    • /
    • 2021
  • Drilling equipment is an essential part used in various fields such as construction, mining, etc., and it has drawn increasing attention in recent years. The drilling method is generally divided into three types. There are a top hammer method that strikes on the ground, a DTH (Down-The-Hole) method that directly strikes a bit in an underground area, and a rotary method that drills by using rotational force. Among them, the DTH method is most commonly used because it enables efficient drilling compared to other drilling methods. In the conventional DTH hammer, the valve between the piston and the bit is opened and closed using a face to face method. In order to improve the power of the DTH hammer, a DTH hammer with foot valve which is capable of instantaneous opening and closing is used in the drilling field. In this study, we designed a lab-scale DTH hammer with the foot valve, and manufactured an evaluation device for the experiment of the DTH hammer. In addition, we analyzed the performance of the DTH hammer adopted with foot valve according to the pressure range of 3-10 bar. As a result, the internal pressure distribution in the DTH hammer was experimentally analyzed, and then, the movement of the piston according to the pressure was predicted. We believe that this study provides the useful results to explain the performance characteristics of the DTH hammer with the foot valve.

Evaluation of Muscle Load and Fatigue According to the Shape of Severe Dementia Patients' Clothing (중증 치매환자복 형태에 따른 근육 부하 및 피로도 평가)

  • Kwang Ae Park;Chung Eun Yang;Hayoung Jung
    • Fashion & Textile Research Journal
    • /
    • v.25 no.2
    • /
    • pp.185-198
    • /
    • 2023
  • The purpose of this study is to obtain information necessary for the development of patient clothes that can reduce physical fatigue of caregivers by quantitatively measuring the muscle load and fatigue. The patient clothes used in this study can be broken down into three types: A type (back center zipper open suit), B type (top-to bottom separated patient clothes), and C type (front zipper open suit). The EMG measurement sites are as follows: hand muscle (brachioradialis), upper arm (biceps, triceps), shoulder (anterior deltoid, medial deltoid, posterior deltoid, upper trapezius), and waist (erector spinae); additionally, the EMG signals were measured. Through this experiment, muscle load, muscle energy consumption, and muscle fatigue generation tendency were analyzed. The results of the study revealed that the C type patient clothes required the most strength in the muscles of the shoulders, upper arms, hands, and back when being put on and taken off compared to other patient clothes. The A type clothes required a relatively large force in opening the zipper. In terms of muscle energy consumption, B type generally called for more strength when it came to the zip-up and putarmsup motions. With regard to the cover the body and put legs/hips up motions, C type used the highest amount of muscle energy, whereas A type used relatively little energy. In terms of the occurrence of muscle fatigue during the putting on and taking off of the patient's clothing, there was a difference in the area and degree of muscle fatigue in the A, B, and C types, and there was also a tendency for muscle fatigue to occur when performing repetitive movements.

Stability Analysis and Design of the Pretension Soil Nailing System (프리텐션 쏘일네일링 시스템의 안정해석 및 설계)

  • Park Si-Sam;Kim Hong-Taek;Choi Young-Geun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.197-206
    • /
    • 2004
  • The ground anchor support system may not be occasionally used because of space limitations in urban excavation sites nearby the existing structures. In this case, soil nailing system with relatively short length of nails could be efficiently adopted as an alternative method. The general soil nailing support system, however, may result in excessive deformations particularly in an excavation zone of the existing weak subsoils. Pretensioning the soil nails then could play important roles to reduce deformations mainly in the upper part of the nailed-soil excavation system as well as to improve local stability. In this study, a newly modified soil nailing technology named as the PSN (Pretension Soil Nailing), is developed to reduce both facing displacements and ground surface settlements in top-down excavation process as well as to increase the global stability. Up to now, the analytical procedure and design technique are proposed to evaluate maximum pretension force and stability of the PSN system. Also, proposed are techniques to determine the required thickness of a shotcrete facing and to estimate probability of a failure against the punching shear, Based on the proposed procedure and technique, effects of the radius of a influence circle and dilatancy angle on the thickness of a shotcrete facing, bonded length and safety factors are analyzed. In addition, effects of the reduction of deformations expected by pretension of the soil nails are examined in detail throughout an illustrative example and the $FLAC^{2D}$ program analysis. And a numerical approach is proposed PSN system using the shear strength reduction technique with the $FLAC^{2D}$ program.