• 제목/요약/키워드: Top-down force

검색결과 45건 처리시간 0.025초

나노인덴터 압입팁의 특성에 따른 표면 이미지 오차 연구 (Errors of Surface Image Due to the Different Tip of Nano-Indenter)

  • 김수인;이찬미;이창우
    • 한국진공학회지
    • /
    • 제18권5호
    • /
    • pp.346-351
    • /
    • 2009
  • 선폭의 감소와 소자 집적도의 증가로 인하여 향후 현재 사용되고 있는 탑-다운(Top-down) 생산방식에서 바텀-업(Bottomup) 방식의 소자 생산이 예상되고 있으며, 이와 관련된 연구가 활발히 진행 중에 있다. 대표적으로 나노와이어(Nanowire)와 나노벨트(Nanobelt)를 이용한 소자 개발이 한 대안이며, 이러한 소자 개발을 위해 물질의 물성 특성 연구를 위하여 나노인덴터를 이용한 물성 연구가 진행 중이다. 특히 나노인덴터는 나노 크기의 구조물에 대한 연구를 위하여 부가적으로 원자힘현미경(AFM; atomic force microscope) 기능을 제공하며, 이를 통하여 얻어진 표면 이미지를 이용하여 나노 구조물의 정확한 위치에 대한 물성 정보를 제공하게 된다. 그러나 나노인덴터에서 사용되는 팁(tip)은 기존의 원자현미경에서 사용되는 팁에 비하여 상대적 크기가 상당히 큰 특징이 있어 나노인덴터에 의한 표면 이미지에는 상당한 오차가 발생하게 된다. 따라서 본 연구에서는 나노인덴터에서 대표적으로 사용되는 50nm 벌코비치 팁(Berkovich tip)과 1um $90^{\circ}$ 원뿔형 팁(Conical tip)을 이용하였으며, 각 팁에 대한 표면 특성을 확인하기 위하여 박막 표면을 각 팁으로 압입하여 압입 후 표면 영상과 압입 깊이를 통하여 팁의 특성을 확인하였다. 이후 나노인덴터를 이용하여 100nm급 나노 구조물에서 표면 주사를 실시하여 획득된 이미지와 기존 원자현미경을 이용한 표면 이미지를 비교하여 오차를 획득하였다. 또한 각 팁의 외형으로 이론적으로 계산된 오차와 비교하였다.

핵연료 노내조사시험설비 설치공사 완료 (The Construction Work Completion of the Fuel Test Loop)

  • 박국남;이정영;지대영;박수기;심봉식;안성호;김학노;이종민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.291-295
    • /
    • 2007
  • FTL(Fuel Test Loop) is a facility that confirms performance of nuclear fuel at a similar irradiation condition with that of nuclear power plant. FTL consists of In-Pile Test Section (IPS) and Out-Pile System (OPS). FTL construction work began on August, 2006 and ended on March, 2007. During Construction, ensuring the worker's safety was the top priority and installation of the FTL without hampering the integrity of the HANARO was the next one. Task Force Team was organized to do a construction systematically and the communication between members of the task force team was done through the CoP(community of Practice) notice board provided by the Institute. The installation works were done successfully overcoming the difficulties such as on the limited space, on the radiation hazard inside the reactor pool, and finally on the shortening of the shut down period of the HANARO. Without a sweet of the workers of the participating company of HEC(Hyundae Engineering Co, Ltd), HDEC(HyunDai Engineering & Construction Co. Ltd), equipment manufacturer, and the task force team, it is not possible to install the FTL facility within the planned shutdown period. The Commissioning of the FTL is on due to check the function and the performance of the equipment and the overall system as well. The FTL shall start operation with high burn up test fuels in early 2008 if the commissioning and licensing progress on schedule.

  • PDF

Experimental investigation of force-distribution in high-strength bolts in extended end-plate connections

  • Abdalla, K.M.;Abu-Farsakh, G.A.R.;Barakat, S.A.
    • Steel and Composite Structures
    • /
    • 제7권2호
    • /
    • pp.87-103
    • /
    • 2007
  • This paper presents some of the results from an experimental research project on the behavior of extended end-plate connections subjected to moment conducted at the Structural Laboratory of Jordan University of Science and Technology. Since the connection behavior affects the structural frame response, it must be included in the global analysis and design. In this study, the behavior of six full-scale stiffened and unstiffened cantilever connections of HEA- and IPE-sections has been investigated. Eight high strength bolts were used to connect the extended end-plate to the column flange in each case. Strain gauges were installed inside each of the top six bolts in order to obtain experimentally the actual tension force induced within each bolt. Then the connection behavior is characterized by the tension force in the bolt, extended end-plate behavior, moment-rotation relation, and beam and column strains. Some or all of these characteristics are used by many Standards; therefore, it is essential to predict the global behavior of column-beam connections by their geometrical and mechanical properties. The experimental test results are compared with two theoretical (equal distribution and linear distribution) approaches in order to assess the capabilities and accuracy of the theoretical models. A simple model of the joint is established and the essential parameters to predict its strength and deformational behavior are determined. The equal distribution method reasonably determined the tension forces in the upper two bolts while the linear distribution method underestimated them. The deformation behavior of the tested connections was characterized by separation of the column-flange from the extended end-plate almost down to the level of the upper two bolts of the lower group and below this level the two parts remained in full contact. The neutral axis of the deformed joint is reasonably assumed to pass very close to the line joining the upper two bolts of the lower group. Smooth monotonic moment-rotation relations for the all tested frames were observed.

Effect of slope with overburden layer on the bearing behavior of large-diameter rock-socketed piles

  • Xing, Haofeng;Zhang, Hao;Liu, Liangliang;Luo, Yong
    • Geomechanics and Engineering
    • /
    • 제24권4호
    • /
    • pp.389-397
    • /
    • 2021
  • Pile foundation is a typical form of bridge foundation and viaduct, and large-diameter rock-socketed piles are typically adopted in bridges with long span or high piers. To investigate the effect of a mountain slope with a deep overburden layer on the bearing characteristics of large-diameter rock-socketed piles, four centrifuge model tests of single piles on different slopes (0°, 15°, 30° and 45°) were carried out to investigate the effect of slope on the bearing characteristics of piles. In addition, three pile group tests with different slope (0°, 30° and 45°) were also performed to explore the effect of slope on the bearing characteristics of the pile group. The results of the single pile tests indicate that the slope with a deep overburden layer not only accelerates the drag force of the pile with the increasing slope, but also causes the bending moment to move down owing to the increase in the unsymmetrical pressure around the pile. As the slope increases from 0° to 45°, the drag force of the pile is significantly enlarged and the axial force of the pile reduces to beyond 12%. The position of the maximum bending moment of the pile shifts downward, while the magnitude becomes larger. Meanwhile, the slope results in the reduction in the shaft resistance of the pile, and the maximum value at the front side of the pile is 3.98% less than at its rear side at a 45° slope. The load-sharing ratio of the tip resistance of the pile is increased from 5.49% to 12.02%. The results of the pile group tests show that the increase in the slope enhances the uneven distribution of the pile top reaction and yields a larger bending moment and different settlements on the pile cap, which might cause safety issues to bridge structures.

Capillary Assembly of Silicon Nanowires Using the Removable Topographical Patterns

  • Hong, Juree;Lee, Seulah;Lee, Sanggeun;Seo, Jungmok;Lee, Taeyoon
    • 한국재료학회지
    • /
    • 제24권10호
    • /
    • pp.509-514
    • /
    • 2014
  • We demonstrate a simple and effective method to accurately position silicon nanowires (Si NWs) at desirable locations using drop-casting of Si NW inks; this process is suitable for applications in nanoelectronics or nanophotonics. Si NWs were assembled into a lithographically patterned sacrificial photoresist (PR) template by means of capillary interactions at the solution interface. In this process, we varied the type of solvent of the SiNW-containing solution to investigate different assembly behaviors of Si NWs in different solvents. It was found that the assembly of Si NWs was strongly dependent on the surface energy of the solvents, which leads to different evaporation modes of the Si NW solution. After Si NW assembly, the PR template was cleanly removed by thermal decomposition or chemical dissolution and the Si NWs were transferred onto the underlying substrate, preserving its position without any damage. This method enables the precise control necessary to produce highly integrated NW assemblies on all length scales since assembly template is easily fabricated with top-down lithography and removed in a simple process after bottom-up drop-casting of NWs.

밀리부품 성형 정밀도 향상을 위한 다단계 미세성형 해석 (Multi-stage forming analysis of milli component for improvement of forming accuracy)

  • 윤종헌;허훈;김승수;최태훈;나경환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.97-100
    • /
    • 2003
  • Globally, the various machine components, as in electronics and communications, are demanded to being high-performance and micro-scale with abrupt development of the fields of computers, mobile communications. As this current tendency, production of the parts that must have high accuracy, so called milli-structure, are accomplished by the method of top-down, differently as in the techniques of MEMS, NANO. But, in the case of milli-structure, production procedure is highly costs, difficult and demands more accurate dimension than the conservative forming, processing technique. In this paper, forming analysis of the micro-former as the milli-structure are performed and then calculate the punch force etc. This information calculated is applied to decide the forming capacity of micro-former and design the process of forming stage, dimension of dies in another forming bodies. And, for the better precise forming analysis, elasto-plastic analysis is to be performed, then the consideration about effect of elastic recovery when punch and die are unloaded, have to be discussed in change of dimensions.

  • PDF

Influence of uplift on liquid storage tanks during earthquakes

  • Ormeno, Miguel;Larkin, Tam;Chouw, Nawawi
    • Coupled systems mechanics
    • /
    • 제1권4호
    • /
    • pp.311-324
    • /
    • 2012
  • Previous investigations have demonstrated that strong earthquakes can cause severe damage or collapse to storage tanks. Theoretical studies by other researchers have shown that allowing the tank to uplift generally reduces the base shear and the base moment. This paper provides the necessary experimental confirmation of some of the numerical finding by other researchers. This paper reports on a series of experiments of a model tank containing water using a shake table. A comparison of the seismic behaviour of a fixed base system (tank with anchorage) and a system free to uplift (tank without anchorage) is considered. The six ground motions are scaled to the design spectrum provided by New Zealand Standard 1170.5 (2004) and a range of aspect ratios (height/radius) is considered. Measurements were made of the impulsive acceleration, the horizontal displacement of the top of the tank and uplift of the base plate. A preliminary comparison between the experimental results and the recommendations provided by the liquid storage tank design recommendations of the New Zealand Society for Earthquake Engineering is included. The measurement of anchorage forces required to avoid uplift under varying conditions will be discussed.

점성토 지반에서의 다중 헬리컬 앵커의 인발 특성 (Pullout Characteristics of Multi Helical Anchors in Clay)

  • 이준대;이봉직;이종규
    • 한국안전학회지
    • /
    • 제12권4호
    • /
    • pp.114-121
    • /
    • 1997
  • Helical anchors are foundation structure that designed to resist uplift loads are installed by applying in load to shaft while rotating it into the ground. These can be a cost effective means of proving tension anchorage for foundation where soil conditions permit their installation because of ease of installation. At present time, tapered helical anchors are commonly used to carry uplift loads. The uplift capacity includes the following factors : the height of overburden above the top helix, the resistant along a cylinder, the weight of the soil in the cylinder and suction force. In order to make clear behavior characteristics of helical anchors with pullout, model tests were conducted with respect to various embedment depth, space of helix, shape of helix. Based on the experimental study, the following conclusions are drawn. 1) The uplift capacity of multi helical anchors increase with embedment ratio of anchors The increase is smooth after critical uplift capacity. 2) Critical breakout factors and critical embedment ratio of multi helical anchor exist 7∼8, 4∼6 respectively. 3) Variation of uplift capacity with helix spaces show down after S/D=5. 4) Critical breakout factors of helical anchor in the laboratory test are similar to Das's theory.

  • PDF

Analysis of Au-DNA Nanowires by Adding HCl to Change Charges of Au Nanoparticles

  • 정윤호;김대철;박현규;노용한
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.421.1-421.1
    • /
    • 2014
  • Top-down processes based on photolithography technology have been developed by using light sources with short wavelength, however, the processes are expected to meet their limits in higher integration of semiconductor integrated circuits. To overcome the limits, researches on bottom-up processes have been proceeded. One of those, fabrication of nanodevices by using nanoparticles has been on research. But it is difficult to align nanoparticles at appropriate positions. To resolve this, studies has been proceeded to form nanowires by bonding DNA molecules which have self-assembly property and positive-charged functionalized gold nanoparticles. There are negative-charged phosphates in backbones of DNA molecules. By using the attractive force between the negative charge of the phosphates and the positive charge of gold nanoparticles, the Au-DNA nanowires are made. However, bonding Au nanoparticles only on DNA molecules, not other nanoparticles, is to be solved. So we studied to resolve this problem. In the formation of Au nanoparticles, we changed the charge of Au nanoparticles by adding HCl to control pH of the functionalized nanoparticles, measured zeta potential. Then we bonded the nanoparticles and DNA molecules and made observation by using FE-SEM and AFM.

  • PDF

양방향말뚝재하시험의 수치해석 (Numerical Analyses of O-Cell Load Test on Pile)

  • 주용선;김낙경;김웅진;박종식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.748-753
    • /
    • 2008
  • Bi-directional load test is one of O-cell tests. The O-cell test is a system which may be used for performing static load tests on cast in situ reinforced concrete bored piles. The technique was devised and developed by Osterberg of Northwestern University(USA) and has been in use around the world. The principle of the method is that an O-cell is installed in a cast in situ bored pile base. Once the pile concrete reaches its design strength the cell is connected to an hydraulic pump and pressured. Pressurisation causes the cell to expand, developing an upward force on the section of pile above the cell loads, pile movements and strains within the pile then enable the capacity of the pile and its load settlement curves to be ascertained. Bi-directional load tests using O-cell are now becoming common practice around the world, particularly where the loads to be applied are high or where it is not convenient to perform top-down loading tests. In the study, calculate ultimate capacity of bi-directional load test using FEM and beam on elasto-plastic foundation theory.

  • PDF