• Title/Summary/Keyword: Top-down Clustering

Search Result 23, Processing Time 0.025 seconds

Three Effective Top-Down Clustering Algorithms for Location Database Systems

  • Lee, Kwang-Jo;Yang, Sung-Bong
    • Journal of Computing Science and Engineering
    • /
    • v.4 no.2
    • /
    • pp.173-187
    • /
    • 2010
  • Recent technological advances in mobile communication systems have made explosive growth in the number of mobile device users worldwide. One of the most important issues in designing a mobile computing system is location management of users. The hierarchical systems had been proposed to solve the scalability problem in location management. The scalability problem occurs when there are too many users for a mobile system to handle, as the system is likely to react slow or even get down due to late updates of the location databases. In this paper, we propose a top-down clustering algorithm for hierarchical location database systems in a wireless network. A hierarchical location database system employs a tree structure. The proposed algorithm uses a top-down approach and utilizes the number of visits to each cell made by the users along with the movement information between a pair of adjacent cells. We then present a modified algorithm by incorporating the exhaustive method when there remain a few levels of the tree to be processed. We also propose a capacity constraint top-down clustering algorithm for more realistic environments where a database has a capacity limit. By the capacity of a database we mean the maximum number of mobile device users in the cells that can be handled by the database. This algorithm reduces a number of databases used for the system and improves the update performance. The experimental results show that the proposed, top-down, modified top-down, and capacity constraint top-down clustering algorithms reduce the update cost by 17.0%, 18.0%, 24.1%, the update time by about 43.0%, 39.0%, 42.3%, respectively. The capacity constraint algorithm reduces the average number of databases used for the system by 23.9% over other algorithms.

Implementation of a Top-down Clustering Protocol for Wireless Sensor Networks (무선 네트워크를 위한 하향식 클러스터링 프로토콜의 구현)

  • Yun, Phil-Jung;Kim, Sang-Kyung;Kim, Chang-Hwa
    • Journal of Information Technology Services
    • /
    • v.9 no.3
    • /
    • pp.95-106
    • /
    • 2010
  • Many researches have been performed to increase energy-efficiency in wireless sensor networks. One of primary research topics is about clustering protocols, which are adopted to configure sensor networks in the form of hierarchical structures by grouping sensor nodes into a cluster. However, legacy clustering protocols do not propose detailed methods from the perspective of implementation to determine a cluster's boundary and configure a cluster, and to communicate among clusters. Moreover, many of them involve assumptions inappropriate to apply those to a sensor field. In this paper, we have designed and implemented a new T-Clustering (Top-down Clustering) protocol, which takes into considerations a node's density, a distance between cluster heads, and remained energy of a node all together. Our proposal is a sink-node oriented top-down clustering protocol, and can form uniform clusters throughout the network. Further, it provides re-clustering functions according to the state of a network. In order to verify our protocol's feasibility, we have implemented and experimented T-Clustering protocol on Crossbow's MICAz nodes which are executed on TinyOS 2.0.2.

Efficient Triphone Clustering Using Monophone Distance (모노폰 거리를 이용한 트라이폰 클러스터링 방법 연구)

  • Bang Kyu-Seop;Yook Dong-Suk
    • Proceedings of the KSPS conference
    • /
    • 2006.05a
    • /
    • pp.41-44
    • /
    • 2006
  • The purpose of state tying is to reduce the number of models and to use relatively reliable output probability distributions. There are two approaches: one is top down clustering and the other is bottom up clustering. For seen data, the performance of bottom up approach is better than that of top down approach. In this paper, we propose a new clustering technique that can enhance the undertrained triphone clustering performance. The basic idea is to tie unreliable triphones before clustering. An unreliable triphone is the one that appears in the training data too infrequently to train the model accurately. We propose to use monophone distance to preprocess these unreliable triphones. It has been shown in a pilot experiment that the proposed method reduces the error rate significantly.

  • PDF

Location Database Clustering using Top-down Approach in Mobile Computing Systems (모바일 시스템에서 Top-down 방식의 위치데이터베이스 클러스터링 알고리즘)

  • Lee, Kwang-Jo;Song, Jin-Woo;Han, Jung-Suk;Yang, Sung-Bong
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.853-856
    • /
    • 2008
  • 최근 모바일 기기 사용자의 수가 증가함에 따라 모바일 기기 사용자의 위치정보를 관리하기 위한 기법들이 활발히 연구되고 있다. 기존의 모바일 시스템에서 위치정보를 관리하기 위한 방법으로 two-tier 방식과 two-tier 방식을 개선한 구조적 기법이 제시되었다. 구조적 기법에서는 어떻게 위치 데이터베이스를 군집화시키는 것이 매우 중요하다. 왜냐하면 데이터베이스를 군집하는 방법에 따라 업데이트 비용의 차이가 크기 때문이다. 구조적 기법을 위한 이전 연구는 set-cover 알고리즘을 기반한 bottom-up 방식의 시스템 이다. 본 논문에서는 구조적 기법의 데이터베이스 군집화를 위해 K-means clustering 알고리즘을 기반한 top-down 방식의 시스템을 사용하였고, 실험을 통해 본 논문에서 제시된 방식의 시스템이 기존 방식의 시스템보다 데이터베이스 업데이트측면에서 13.67%의 성능이 향상되었음을 보였다.

Top-down Hierarchical Clustering using Multidimensional Indexes (다차원 색인을 이용한 하향식 계층 클러스터링)

  • Hwang, Jae-Jun;Mun, Yang-Se;Hwang, Gyu-Yeong
    • Journal of KIISE:Databases
    • /
    • v.29 no.5
    • /
    • pp.367-380
    • /
    • 2002
  • Due to recent increase in applications requiring huge amount of data such as spatial data analysis and image analysis, clustering on large databases has been actively studied. In a hierarchical clustering method, a tree representing hierarchical decomposition of the database is first created, and then, used for efficient clustering. Existing hierarchical clustering methods mainly adopted the bottom-up approach, which creates a tree from the bottom to the topmost level of the hierarchy. These bottom-up methods require at least one scan over the entire database in order to build the tree and need to search most nodes of the tree since the clustering algorithm starts from the leaf level. In this paper, we propose a novel top-down hierarchical clustering method that uses multidimensional indexes that are already maintained in most database applications. Generally, multidimensional indexes have the clustering property storing similar objects in the same (or adjacent) data pares. Using this property we can find adjacent objects without calculating distances among them. We first formally define the cluster based on the density of objects. For the definition, we propose the concept of the region contrast partition based on the density of the region. To speed up the clustering algorithm, we use the branch-and-bound algorithm. We propose the bounds and formally prove their correctness. Experimental results show that the proposed method is at least as effective in quality of clustering as BIRCH, a bottom-up hierarchical clustering method, while reducing the number of page accesses by up to 26~187 times depending on the size of the database. As a result, we believe that the proposed method significantly improves the clustering performance in large databases and is practically usable in various database applications.

A Search-Result Clustering Method based on Word Clustering for Effective Browsing of the Paper Retrieval Results (논문 검색 결과의 효과적인 브라우징을 위한 단어 군집화 기반의 결과 내 군집화 기법)

  • Bae, Kyoung-Man;Hwang, Jae-Won;Ko, Young-Joong;Kim, Jong-Hoon
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.3
    • /
    • pp.214-221
    • /
    • 2010
  • The search-results clustering problem is defined as the automatic and on-line grouping of similar documents in search results returned from a search engine. In this paper, we propose a new search-results clustering algorithm specialized for a paper search service. Our system consists of two algorithmic phases: Category Hierarchy Generation System (CHGS) and Paper Clustering System (PCS). In CHGS, we first build up the category hierarchy, called the Field Thesaurus, for each research field using an existing research category hierarchy (KOSEF's research category hierarchy) and the keyword expansion of the field thesaurus by a word clustering method using the K-means algorithm. Then, in PCS, the proposed algorithm determines the category of each paper using top-down and bottom-up methods. The proposed system can be used in the application areas for retrieval services in a specialized field such as a paper search service.

EXTENDED ONLINE DIVISIVE AGGLOMERATIVE CLUSTERING

  • Musa, Ibrahim Musa Ishag;Lee, Dong-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.406-409
    • /
    • 2008
  • Clustering data streams has an importance over many applications like sensor networks. Existing hierarchical methods follow a semi fuzzy clustering that yields duplicate clusters. In order to solve the problems, we propose an extended online divisive agglomerative clustering on data streams. It builds a tree-like top-down hierarchy of clusters that evolves with data streams using geometric time frame for snapshots. It is an enhancement of the Online Divisive Agglomerative Clustering (ODAC) with a pruning strategy to avoid duplicate clusters. Our main features are providing update time and memory space which is independent of the number of examples on data streams. It can be utilized for clustering sensor data and network monitoring as well as web click streams.

  • PDF

Module Communization for Product Platform Design Using Clustering Analysis (군집 분석을 활용한 제품 플랫폼 설계를 위한 모듈 공용화)

  • Yoo, Jaewook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.3
    • /
    • pp.89-98
    • /
    • 2014
  • Platform-based product family design is recognized as an effective method to satisfy the mass customization which is a current market trend. In order to design platform-based product family successfully, it is the key work to define a good product platform, which is to identify the common modules that will be shared among the product family. In this paper the clustering analysis using dendrogram is proposed to capture the common modules of the platform. The clustering variables regarding both marketing and engineering sides are derived from the view point of top-down product development. A case study of a cordless drill/drive product family is presented to illustrate the feasibility and validity of the overall procedure developed in this research.

A Hybrid Document Clustering for a Web Agent (웹 에이전트를 위한 통합방식 문서 클러스터링)

  • Yang, Chan-Beom;Lee, Seong-Yeol;Park, Yeong-Taek
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.5
    • /
    • pp.422-430
    • /
    • 2001
  • 웹 에이전트는 사용자가 웹을 브라우징하는 행위를 모니터하여 사용자의 관심 정보를 학습하고 사용자가 필요로 하는 웹 상의 정보를 자동 제공하는 지능형 시스템이다. 웹 에이전트가 사용자의 선호도를 학습하기 위해서는 귀납적 기계학습을 수행하는데, 이때 학습의 효율을 높이기 위해서는 사용자가 관심있어하는 문서들을 유사한 문서들로 클러스터링하여 학습 시스템에 제공하여야 한다. 본 논문에서는 웹 에이전트의 학습 시스템에 입력되는 학습대상 문서들을 보다 정확하고 효율적으로 클러스터링하여 제공하기 위해서 Top-down 방식과 Bottom-up 방식을 통합 적용한 통합방식 문서 클러스터링과 초기 클러스터 생성을 위한 평가함수를 제시한다. Top-down 방식으로는 개념적 클러스터링 알고리즘인 COBWEB을 적용하고, Bottom-up 방식으로는 교차기반(Intersection-based) 클러스터링 방식인 Etzioni의 클러스터링 알고리즘을 적용하였다.

  • PDF