• 제목/요약/키워드: Top oxide layer

검색결과 149건 처리시간 0.043초

나노 옥사이드 층을 가진 스펙큘라 스핀밸브의 자기저항 특성 및 교환바이어스의 열처리 온도 의존성 (The Dependences of Magnetoresistance and Exchange Biasing on Annealing temperature in Top and Bottom Type Specular Spin Valves with Nano-oxide Layers)

  • 장성호;강탁;김희중;김광윤
    • 한국자기학회지
    • /
    • 제12권3호
    • /
    • pp.103-108
    • /
    • 2002
  • 나노옥사이드(nato-oxide layer, NOL) 층이 고정층에 첨가된 스펙큘라 스핀밸브(specular spin valve)와 NOL이 없는 기본 스핀 밸브를 UHV 스퍼터 시스템에서 FeMn 반강자성층을 사용하여 탑 및 바텀 형 스핀밸브를 제조하였으며, 제조한 시료의 열처리 온도에 따른 자기저항 특성 및 교환바이어스 특성을 비교 분석하였다. 탑 형 스핀밸브에서는 NOL이 있는 경우 25$0^{\circ}C$ 열처리에서 9.2%의 자기저항비를 얻을 수 있었으며, 바텀 형 스핀밸브에서는 25$0^{\circ}C$ 열처리에서 10.1%의 자기저항비를 얻을 수 있었다. 따라서 바텀 형 스핀밸브가 탑 형 스핀밸브보다 고정층에 첨가된 NOL의 스펙큘라 반사 효과가 높아 자기저항비가 증가함을 확인하였다. 또한 바텀 형 스핀밸브에서 25$0^{\circ}C$ 이상의 열처리시 NOL이 있는 경우가 NOL이 없는 경우보다 28 % 이상의 교환바이어스 증가를 보였다. 이와 같은 원인은 NOL이 첨가된 고정층의 자기모멘트의 감소와 X-선 회절 분석 결과로부터 NOL의 첨가에 따른 강화된 (111) FeMn집합조직 때문이라고 판단된다.

Study of the Effects of the Antisite Related Defects in Silicon Dioxide of Metal-Oxide-Semiconductor Structure on the Gate Leakage Current

  • Mao, Ling-Feng;Wang, Zi-Ou;Xu, Ming-Zhen;Tan, Chang-Hua
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권2호
    • /
    • pp.164-169
    • /
    • 2008
  • The effects of the antisite related defects on the electronic structure of silica and the gate leakage current have been investigated using first-principles calculations. Energy levels related to the antisite defects in silicon dioxide have been introduced into the bandgap, which are nearly 2.0 eV from the top of the valence band. Combining with the electronic structures calculated from first-principles simulations, tunneling currents through the silica layer with antisite defects have been calculated. The tunneling current calculations show that the hole tunneling currents assisted by the antisite defects will be dominant at low oxide field whereas the electron direct tunneling current will be dominant at high oxide field. With increased thickness of the defect layer, the threshold point where the hole tunneling current assisted by antisite defects in silica is equal to the electron direct tunneling current extends to higher oxide field.

플라즈마 이온주입 기술을 이용한 SOI 웨이퍼 제조 (Silicon On Insulator (SOI) Wafer Development using Plasma Source Ion Implantation (PSII) Technology)

  • 정승진;이성배;한승희;임상호
    • 대한금속재료학회지
    • /
    • 제46권1호
    • /
    • pp.39-43
    • /
    • 2008
  • PSII (Plasma Source Ion Implantation) using high density pulsed ICP source was employed to implant oxygen ions in Si wafer. The PSII technique can achieve a nominal oxygen dose of $3 {\times}10^{17}atoms/cm^2$ in implantation time of about 20min. In order to prevent oxidation of SOI layer during high temperature annealing, the wafer was capped with $2,000{\AA}$ $Si_3N_4 $ by PECVD. Cross-sectional TEM showed that continuous $500{\AA}$ thick buried oxide layer was formed with $300{\AA}$ thick top silicon layer in the sample. This study showed the possibility of SOI fabrication using the plasma source ion implantation with pulsed ICP source.

Electrical Properties of Metal-Oxide Quantum dot Hybrid Resistance Memory after 0.2-MeV-electron Beam Irradiation

  • Lee, Dong Uk;Kim, Dongwook;Kim, Eun Kyu;Pak, Hyung Dal;Lee, Byung Cheol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.311-311
    • /
    • 2013
  • The resistance switching memory devices have several advantages to take breakthrough for the limitation of operation speed, retention, and device scale. Especially, the metal-oxide materials such as ZnO are able to fabricate on the flexible and visible transparent plastic substrate. Also, the quantum dots (QDs) embedded in dielectric layer could be improve the ratio between the low and the high resistance becauseof their Coulomb blockade, carrier trap and induced filament path formation. In this study, we irradiated 0.2-MeV-electron beam on the ZnO/QDs/ZnO structure to control the defect and oxygen vacancy of ZnO layer. The metal-oxide QDs embedded in ZnO layer on Pt/glass substrate were fabricated for a memory device and evaluated electrical properties after 0.2-MeV-electron beam irradiations. To formation bottom electrode, the Pt layer (200 nm) was deposited on the glass substrate by direct current sputter. The ZnO layer (100 nm) was deposited by ultra-high vacuum radio frequency sputter at base pressure $1{\times}10^{-10}$ Torr. And then, the metal-oxide QDs on the ZnO layer were created by thermal annealing. Finally, the ZnO layer (100 nm) also was deposited by ultra-high vacuum sputter. Before the formation top electrode, 0.2 MeV liner accelerated electron beams with flux of $1{\times}10^{13}$ and $10^{14}$ electrons/$cm^2$ were irradiated. We will discuss the electrical properties and the physical relationships among the irradiation condition, the dislocation density and mechanism of resistive switching in the hybrid memory device.

  • PDF

Growth Behavior of Thermally Grown Oxide Layer with Bond Coat Species in Thermal Barrier Coatings

  • Jung, Sung Hoon;Jeon, Soo Hyeok;Park, Hyeon-Myeong;Jung, Yeon Gil;Myoung, Sang Won;Yang, Byung Il
    • 한국세라믹학회지
    • /
    • 제55권4호
    • /
    • pp.344-351
    • /
    • 2018
  • The effects of bond coat species on the growth behavior of thermally grown oxide (TGO) layer in thermal barrier coatings (TBCs) was investigated through furnace cyclic test (FCT). Two types of feedstock powder with different particle sizes and distributions, AMDRY 962 and AMDRY 386-4, were used to prepare the bond coat, and were formed using air plasma spray (APS) process. The top coat was prepared by APS process using zirconia based powder containing 8 wt% yttria. The thicknesses of the top and bond coats were designed and controlled at 800 and $200{\mu}m$, respectively. Phase analysis was conducted for TBC specimens with and without heat treatment. FCTs were performed for TBC specimens at $1121^{\circ}C$ with a dwell time of 25 h, followed by natural air cooling for 1 h at room temperature. TBC specimens with and without heat treatment showed sound conditions for the AMDRY 962 bond coat and AMDRY 386-4 bond coat in FCTs, respectively. The growth behavior of TGO layer followed a parabolic mode as the time increased in FCTs, independent of bond coat species. The influences of bond coat species and heat treatment on the microstructural evolution, interfacial stability, and TGO growth behavior in TBCs are discussed.

Flexible quantum dot solar cells with PbS-MIx/PbS-BuDT bilayers

  • 최근표;양영우;윤하진;임상규
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.347.2-347.2
    • /
    • 2016
  • Recently, in order to improve the performance of the colloidal quantum dot solar cells (CQDSCs), various efforts such as the modification of the cell architecture and surface treatment for quantum dot (QD) passivation have been made. Especially, the incorporation of halides into the QD matrix was reported to improve the performances significantly via passivating QD trap states that lower the life-time of the minority-carrier. In this work, we fabricated a lead sulfide (PbS) QD bilayer treated with different ligands and utilized it as a photoactive layer of the CQDSCs. The bottom and top PbS layer was treated using metal iodide ($MI_x$ and butanedithiol (BuDT), respectively. All the depositions and ligand treatments were carried out in air using layer-by-layer spin-coating process. The fabrication of the active layers as well as the n-type zinc oxide (ZnO) layer was successfully carried out on the bendable indium-tin-oxide (ITO)-coated polyethylene terephthalate (PET) substrate, which implies that this technique can be applied to the fabrication of flexible and/or wearable solar cells. The power conversion efficiency (PCE) of the CQDSCs with the architecture of $PET/ITO/ZnO/PbS-MI_x/PbS-BuDT/MoO_x/Ag$ reached 4.2 %, which is significantly larger than that of the cells with single QD (PbS-BuDT) layer.

  • PDF

Layer-by-layer 기법을 통한 Cu2(btc)3-AAO 하이브리드 분리막의 제조 (Preparation of Cu2(btc)3-AAO Hybrid Membrane by Layer-by-layer Technique)

  • 유현석;최진섭
    • 한국표면공학회지
    • /
    • 제51권1호
    • /
    • pp.21-26
    • /
    • 2018
  • The $Cu_2(btc)_3$ metal-organic frameworks (MOF) coated anodic aluminum oxide (AAO) membrane was successfully prepared by layer-by-layer technique using hand spray method. It was confirmed that the $Cu_2(btc)_3$ layer, which has the pore sized in 2-3 nm, on surface of AAO exhibited the polycrystalline thin film structure by XRD analysis. More than 100 repetitive spray cycles were required to obtain more robust and thick MOFs on AAO and it was possible to uniformly coat both the top and bottom surfaces of the AAO. It should be noted that the MOFs also could be coated on surface of pores resulting in reduce the size of pore from 52 nm to 32 nm.

The a-Si:H/poly-Si Heterojunction Solar Cells

  • Kim, Sang-Su;Kim, do-Young;Lim, Dong-Gun;Junsin Yi;Lee, Jae-Choon;Lim, Koeng-Su
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권5호
    • /
    • pp.65-71
    • /
    • 1997
  • We present heterojunction solar cells with a structure of metal/a-Si:H(n-i-p)/poly-Si(n-p)/metal for the terrestrial applications. This cell consists fo two component cells: a top n-i-p junction a-Si:Hi cell with wide-bandgap 1.8eV and a bottom n-p junction poly-Si cell with narrow-bandgap 1.1eV. The efficiency influencing factors of the solar cell were investigated in terms of simulation an experiment. Three main topics of the investigated study were the bottom cell with n-p junction poly-Si, the top a-Si:H cell with n-i-p junction, and the interface layer effects of heterojunction cell. The efficiency of bottom cell was improved with a pretreatment temperature of 900$^{\circ}C$, surface polishing, emitter thickness of 0.43$\mu\textrm{m}$, top Yb metal, and grid finger shading of 7% coverage. The process optimized cell showed a conversion efficiency about 16%. Top cell was grown by suing a photo-CVD system which gave an ion damage free and good p/i-a-Si:H layer interface. The heterojunction interface effect was examined with three different surface states; a chemical passivation, thermal oxide passivation, and Yb metal. the oxide passivated cell exhibited the higher photocurrent generation and better spectral response.

  • PDF

Evaluation of Degradation Characteristics of Thermal Barrier Coating on Gas Turbine Blades

  • Jung, Yongchan;Kim, Mintae;Lee, Juhyeung;Ahn, Jamin;Kim, Kihong
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권2호
    • /
    • pp.273-278
    • /
    • 2016
  • In order to evaluate the lifespan of high-temperature parts with thermal barrier coating in gas turbines used for power generation, this study was performed on an 80 MW-class gas turbine exceeding 24 k equivalent operating hours. Degradation characteristics were evaluated by analyzing the YSZ (Yttria Stabilized Zirconia) top coat, which serves as the thermal barrier coating layer, the NiCrAlY bond coat, and interface layers. Microstructural analysis of the top, middle, and bottom sections showed that Thermal Growth Oxide (TGO) growth, Cr precipitate growth within the bond coat layer, and formation of diffusion layer occur actively in high-temperature sections. These microstructural changes were consistent with damaged areas of the thermal barrier coating layer observed at the surface of the used blade. The distribution of Cr precipitates within the bond coat layer, in addition to the thickness of TGO, is regarded as a key indicator in the evaluation of degradation characteristics.

Efficient Top-Emitting Organic Light Emitting Diode with Surface Modified Silver Anode

  • Kim, Sung-Jun;Hong, Ki-Hyon;Kim, Ki-Soo;Lee, Ill-Hwan;Lee, Jong-Lam
    • 한국전기전자재료학회논문지
    • /
    • 제23권7호
    • /
    • pp.550-553
    • /
    • 2010
  • The enhancement of quantum efficiency using a surface modified Ag anode in top-emitting organic light emitting diodes (TEOLEDs) is reported. The operation voltage at the current density of $1\;mA/cm^2$ of TEOLEDs decreased from 9.3 V to 4.3 V as the surface of anode coated with $CuO_x$ layer. The work function of these structures were quantitatively determined using synchrotron radiation photoemission spectroscopy. Secondary electron emission spectra revealed that the work function of the Ag/$CuO_x$ structure is higher by 0.6 eV than that of Ag. Thus, the $CuO_x$ structure acts as a role in reducing the hole injection barrier by about 0.6 eV, resulting in a decrease of the turn-on voltage of top-emitting light emitting diodes.