• 제목/요약/키워드: Top bracing

검색결과 31건 처리시간 0.022초

Lateral buckling formula of stepped beams with length-to-height ratio factor

  • Park, Jong Sup
    • Structural Engineering and Mechanics
    • /
    • 제18권6호
    • /
    • pp.745-757
    • /
    • 2004
  • Lateral-torsional buckling moment resistances of I-shaped stepped beams with continuous lateral top-flange bracing under a single point load on the top flange and negative end moments were investigated. Stepped beam factors and a moment gradient correction factor suggested by Park et al. (2003, 2004) were used to develop new lateral buckling formula for beam designs. From the investigation of finite element analysis (FEA), new lateral buckling formula of beams with singly or doubly stepped member changes and with continuous lateral top-flange bracing subjected to a single point load on top flange and end moments were developed. The new design equation includes the length-to-height ratio factor to account for the increase of lateral-torsional buckling moment resistance as the increase of length-to-height ratio of stepped beams. The calculation examples for obtaining lateral-torsional buckling moment resistance using the new design equation indicate that engineers should easily determine the buckling capacity of the stepped beams.

병렬 엔진의 X형 진동 위상 조정에 의한 디젤 발전 플랜트 진동 제어 (Vibration Control on the Diesel Power Plant by the Phase Adjustment of Paralled Engines' X-Mode Vibration;)

  • 이돈출;김의간;전효중
    • 소음진동
    • /
    • 제6권6호
    • /
    • pp.701-708
    • /
    • 1996
  • Diesel power plants are frequently used as a power supplier on the island and the isolated places where electric power is required. The heat efficiency of the low speed 2 stroke diesel engines is higher than those of 4 stroke diesel engines or other heat engines and further its mobility and durability is also better than other engines. They can be also easily repaired and maintained. With these advantages, demand for the use of the low speed 2 stroke diesel engine as a power source is increasing. However, there are some disadvantages with these diesel engines such as the bigger vibrating excitation forces generated by higher combustion pressure in cylinder and by the inertia force of the reciprocating parts. Further, engine vibrations are transfered into their adjacent buildings and manufacturing factories and eventually produces local vibrations. In order to reduce X-mode vibration of engine body, several methods have been introduced in the recent researches. In this paper, accordingly, a new vibrationcontrol method applying a synchrophaser and a top bracing between two diesel engines is adopted in order to reduce these structural vibrations of diesel power plant. It was experimentally verified that the structural vibrations were greatly reduced by the phase adjustment for the 6th order X-mode vibration with the synchrophaser and the top bracing.

  • PDF

Performance of cold-formed steel wall frames under compression

  • Pan, Chi-Ling;Peng, Jui-Lin
    • Steel and Composite Structures
    • /
    • 제5권5호
    • /
    • pp.407-420
    • /
    • 2005
  • This study presents the strength of braced and unbraced cold-formed steel wall frames consisting of several wall studs acting as columns, top and bottom tracks, and bracing members. The strength and the buckling mode of steel wall frames were found to be different due to the change of bracing type. In addition, the spacing of wall studs is a crucial factor to the strength of steel wall frames. The comparisons were made between the test results and the predictions computed based on AISI Code. The related specifications do not clearly provides the effective length factors for the member of cold-formed steel frame under compression. This paper proposes effective length factors for the steel wall frames based on the test results. A theoretical model is also derived to obtain the modulus of elastic support provided by the bracing at mid-height of steel wall frames in this research.

U형 강박스거더의 휨설계를 위한 합리적인 브레이싱의 형태 및 패널 수 도출에 관한 실험적 연구 (Experimental Study on the Presentation of Adequate Type and Number of Bracing Panel for Design of U-Shaped Steel Box Girder)

  • 심낙훈;박영석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권1호
    • /
    • pp.68-76
    • /
    • 2007
  • 본 연구에서는 실내실험을 통하여 U형 강박스거더의 상부 수평브레이싱이 휨 거동에 미치는 영향을 파악하고 기존의 수평브레이싱 설계 제안식에 대한 적정성을 검토하기 위하여, 실제 시공되고 있는 U형 강박스 거더 단면의 2/3정도 되는 캔틸레버 형식의 시험체를 제작하여 휨 실험을 수행하였다. 이로써 수집된 데이터를 분석하여 상부 수평브레이싱의 합리적인 휨 설계식 제안을 위한 기초를 마련하였다. 그리고, 상부 수평브레이싱의 형태 및 패널수의 변화에 따른 휨 실험을 통하여 브레이싱 부재의 응력을 측정하고 Helwig가 제안한 설계식으로 구한 값과 비교한 결과 합리적인 브레이싱의 형태 및 패널 수를 얻을 수 있었다.

Response modification factor of suspended zipper braced frames

  • Abdollahzadeh, Gholamreza;Abbasi, Mehdi
    • Steel and Composite Structures
    • /
    • 제18권1호
    • /
    • pp.165-185
    • /
    • 2015
  • The suspended zipper bracing system is suggested to reduce the flaws of ordinary zipper braced and concentric inverted V braced frames. In the design procedure of suspended zipper bracing systems, columns and top story truss elements are strengthened. This bracing system show different performances and characteristics compared with inverted V braced and ordinary zipper frames. As a result, a different response modification factor for suspend zipper frames is needed. In this research paper, the response modification factor of suspended zipper frames was obtained using the incremental dynamic analysis. Suspended zipper braced frames with different stories and bay lengths were selected to be representations of the design space. To analyze the frames, a number of models were constructed and calibrated using experimental data. These archetype models were subjected to 44 earthquake records of the FEMA-P695 project data set. The incremental dynamic analysis and elastic dynamic analysis were carried out to determine the yield base shear value and elastic base shear value of archetype models using the OpenSEES software. The seismic response modification factor for each frame was calculated separately and the values of 9.5 and 13.6 were recommended for ultimate limit state and allowable stress design methods, respectively.

탄소섬유 앵커 X-브레이싱으로 보강된 철근콘크리트 기둥의 구조거동 및 내진보강 효과 (Retrofitting Effects and Structural Behavior of RC Columns Strengthened with X-Bracing Using Carbon Fiber Anchor)

  • 심종성;이강석;권혁우;김현중
    • 콘크리트학회논문집
    • /
    • 제24권3호
    • /
    • pp.323-331
    • /
    • 2012
  • 이 논문에서는 콘크리트 기둥에 새로운 보강방법을 제시하여 반복하중에 대한 구조적인 성능시험을 하였다. 두 개의 콘크리트 기둥에 고성능 탄소섬유 다발을 이용하여 X자 형태의 보강을 실시하고, 기둥의 내부에 X-브레이싱을 고정하기 위해 기둥 단면을 천공하여 탄소섬유 다발을 기둥에 삽입한 후 탄소섬유로 단부를 감싸주는 새로운 보강방법인 탄소섬유 앵커 X-브레이싱 보강공법을 이용해 콘크리트 기둥의 구조성능과 보강효과를 시험을 통하여 규명하였다. 이를 위해 탄소섬유로 보강된 휨 파괴형 실험체 기둥과 전단 파괴형 실험체 기둥을 축소모형으로 각각 제작하였다. 휨과 전단저항 기둥에 대해 X-브레이스 보강 유, 무 실험체에 반복하중시험을 통해 기둥의 연성과 강도 보강효과를 확인하였다.

박용 엔진의 유한요소 모드해석을 통한 상태 공간 모델 개발 (A State Space Model using mode analysis by the Finite Elements Method for the Huge Marine Diesel Engine)

  • 이원창;김성열;안병수;최헌오;김재실
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.387-388
    • /
    • 2006
  • This article provides a dynamic analysis model for huge marine engine that examined analytically variation effects of frequency response by fitting of transverse stays such as hydraulic type. First, vibration analysis using the three dimensional finite element models for the huge marine engine has performed in order to find out the dynamic characteristics. Second, three dimensional finite elements model for the huge marine engine was modifued so that generate forcing nodes in crosshead part and top bracing nodes in cylinder frame part. Third, a system matrix and output matrix was derived for the general siso(single input single out) state space model. Finally, developed state space model for the three dimensional finite elements model for the huge marine engine without the additional modifying process.

  • PDF

Improved bracing systems to prevent exterior girder rotation during bridge construction

  • Ashiquzzaman, Md;Ibrahim, Ahmed;Lindquist, Will;Hindi, Riyadh
    • Steel and Composite Structures
    • /
    • 제32권3호
    • /
    • pp.325-336
    • /
    • 2019
  • Concrete placement and temporary formwork of bridge deck overhangs result in unbalanced eccentric loads that cause exterior girders to rotate during construction. These construction loads affect the global and local stability of the girders and produce permanent girder rotation after construction. In addition to construction loads, the skew angle of the bridge also contributes to girder rotation. To prevent rotation (in both skewed and non-skewed bridges), a number of techniques have been suggested to temporarily brace the girders using transverse tie bars connecting the top flanges and embedded in the deck, temporary horizontal and diagonal steel pipes placed between the webs of the exterior and first interior girders, and permanent cross frames. This study includes a rigorous three-dimensional finite element analysis to evaluate the effectiveness of several bracing systems for non-skewed and several skewed bridges. In this paper, skew angles of $0^{\circ}$, $20^{\circ}$, $30^{\circ}$, and $45^{\circ}$ were considered for single- and three-span bridges. The results showed that permanent cross frames worked well for all bridges, whereas temporary measures have limited application depending on the skew angle of the bridge.

Progressive collapse of steel-framed gravity buildings under parametric fires

  • Jiang, Jian;Cai, Wenyu;Li, Guo-Qiang;Chen, Wei;Ye, Jihong
    • Steel and Composite Structures
    • /
    • 제36권4호
    • /
    • pp.383-398
    • /
    • 2020
  • This paper investigates the progressive collapse behavior of 3D steel-framed gravity buildings under fires with a cooling phase. The effect of fire protections and bracing systems on whether, how, and when a gravity building collapses is studied. It is found that whether a building collapses or not depends on the duration of the heating phase, and it may withstand a "short-hot" fire, but collapses under a mild fire or a "long-cool" fire. The collapse time can be conservatively determined by the time when the temperature of steel columns reaches a critical temperature of 550 ℃. It is also found that the application of a higher level of fire protection may prevent the collapse of a building, but may also lead to its collapse in the cooling phase due to the delayed temperature increment in the heated members. The tensile membrane action in a heated slab can be resisted by a tensile ring around its perimeter or by tensile yielding lines extended to the edge of the frame. It is recommended for practical design that hat bracing systems should be arranged on the whole top floor, and a combination of perimeter and internal vertical bracing systems be used to mitigate the fire-induced collapse of gravity buildings. It is also suggested that beam-to-column connections should be designed to resist high tensile forces (up to yielding force) during the cooling phase of a fire.