• Title/Summary/Keyword: Top Girder

Search Result 101, Processing Time 0.023 seconds

Camber Reconstruction for a Prefab PSC Girder Using Collocated Strain Measurements (병치된 변형률 계측치를 이용한 프리팹 PSC 거더 캠버 재구성)

  • Kim, Hyun Young;Ko, Do Hyeon;Park, Hyun Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.151-162
    • /
    • 2022
  • Prefab members have attracted attention because they can be mass-produced in factories through smart construction technology. For prefab prestressed concrete girders, it is important to manage the shapes of the girders properly from production to the pre-installation stage for consistency with the prefab floor plate during the erection process. This paper presents a camber reconstruction method using collocated strain measurements from the top and bottom of the prefab girder. In particular, the camber reconstruction method is applied to measured strain data in which the time-dependent behavior of concrete is considered after the introduction of prestress. Through Monte Carlo numerical simulations, the statistical accuracy of the reconstructed camber for a limited number of sensors, measurement errors, and nonlinear time-dependent behaviors are analyzed and validated.

The study on corrosion of the inner area of closed box-girder for unpainted weathering steel bridges (무도장 내후성 강 교량의 밀폐형 박스거더 내부의 부식에 대한 고찰)

  • Ma, Seung-Hwan;Noh, Young-Tai;Jang, Gun-Ik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2391-2400
    • /
    • 2015
  • Weather proof steels are used for steel bridges due to its high corrosion resistance under atmospheric conditions. However, instead of forming stabilized rust layers, general rust occurs on weather proof steels under high humidity condition close to seawater or shady places. In Japan, therefore, they perform rust stabilization treatment instead of unpainted treatment due to severe atmospheric conditions. However, most of domestic weather proof steels were constructed unpainted in the form of closed box-girder, which makes the periodical repetition of dry and wet hard to occur. For the steel bridges constructed on the Han river, the evaporation of water, dew condensation due to temperature change, and stagnant water due to rain affect harmfully on the formation of passive film on weather proof steels. Thus, in this research, in order to analyze corrosion properties inside the closed box-girder for the unpainted weather proof steel bridge in the waterworks safety zone, multiple ways of analysis such as observation with eyes, cellophane-tape test, steel thickness measurement, surface corrosion potential measurement, electron microscope analysis, and X-ray diffraction analysis of the rust were performed. As a result, unstable rust layer was observed inside the closed box-girder, and severe corrosion was observed on the top and bottom of the flanges due to the effects of stagnant water caused by rain, dew condensation, and de-icing materials.

Stud and Puzzle-Strip Shear Connector for Composite Beam of UHPC Deck and Inverted-T Steel Girder (초고성능 콘크리트 바닥판과 역T형 강거더의 합성보를 위한 스터드 및 퍼즐스트립 전단연결재에 관한 연구)

  • Lee, Kyoung-Chan;Joh, Changbin;Choi, Eun-Suk;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • Since recently developed Ultra-High-Performance-Concrete (UHPC) provides very high strength, stiffness, and durability, many studies have been made on the application of the UHPC to bridge decks. Due to high strength and stiffness of UHPC bridge deck, the structural contribution of top flange of steel girder composite to UHPC deck would be much lower than that of conventional concrete deck. At this point of view, this study proposes a inverted-T shaped steel girder composite to UHPC deck. This girder requires a new type of shear connector because conventional shear connectors are welded on top flange. This study also proposes three different types of shear connectors, and evaluate their ultimate strength via push-out static test. The first one is a stud shear connector welded directly to the web of the girder in the transverse direction. The second one is a puzzle-strip type shear connector developed by the European Commission, and the last one is the combination of the stud and the puzzle-strip shear connectors. Experimental results showed that the ultimate strength of the transverse stud was 26% larger than that given in the AASHTO LRFD Bridge Design Specifications, but a splitting crack observed in the UHPC deck was so severe that another measure needs to be developed to prevent the splitting crack. The ultimate strength of the puzzle-strip specimen was 40% larger than that evaluated by the equation of European Commission. The specimens combined with stud and puzzle-strip shear connectors provided less strength than arithmetical sum of those. Based on the experimental observations, there appears to be no advantage of combining transverse stud and puzzle-strip shear connectors.

Analysis of Flexural Behavior of Composite Beam with Steel Fiber Reinforced Ultra High Performance Concrete Deck and Inverted-T Shaped Steel with Tension Softening Behavior (인장연화거동을 고려한 강섬유 보강 초고성능 콘크리트 바닥판과 역T형 강재 합성보의 휨거동 해석)

  • Yoo, Sung-Won;Yang, In-Hwan;Jung, Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.185-193
    • /
    • 2015
  • Ultra high performance concrete (UHPC) has been developed to overcome the low tensile strengths and brittleness of conventional concrete. Considering that UHPC, owing to its composition and the use of steel fibers, develops a compressive strength of 180 MPa as well as high stiffness, the top flange of the steel girder may be superfluous in the composite beam combining a slab made of UHPC and the steel girder. In such composite beam, the steel girder takes the form of an inverted-T shaped structure without top flange in which the studs needed for the composition of the steel girder with the UHPC slab are disposed in the web of the steel girder. This study investigates experimentally and analytically the flexural behavior of this new type of composite beam to propose details like stud spacing and slab thickness for further design recommendations. To that goal, eight composite beams with varying stud spacing and slab thickness were fabricated and tested. The test results indicated that stud spacing running from 100 mm to 2 to 3 times the slab thickness can be recommended. In view of the relative characteristic slip limit of Eurocode-4, the results showed that the composite beam developed ductile behavior. Moreover, except for the members with thin slab and large stud spacing, most of the specimens exhibited results different to those predicted by AASHTO LRFD and Eurocode-4 because of the high performance developed by UHPC.

The U-frame concept to assess the stability of chords of Warren-truss bridges with independent cross-beam decks

  • Wojciech Siekierski
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.77-87
    • /
    • 2024
  • Analytical methods for assessment of the out-of-plane buckling of unbraced top chords of truss bridges may look obsolete while comparing them to finite element analysis. However they are, usually, superior when rapid assessment is necessary. Analytical methods consider the top chord as a bar on elastic supports provided by bracing (Holt, Timoshenko). Correct assessment of the support elasticity (stiffness) is crucial. In the case of truss bridge spans of traditional structural layout (cross-beams at the truss chord nodes only), the elasticity may be set based on the analysis of the, so called, U-frame stiffness. Here the analyses consider the U-frame itself (a pair of verticals and a cross-beam) or the U-frame with adjacent diagonals or the pair of diagonals (in the absence of verticals) and the members of the bottom chord in the adjacent panels. For all the cases, the stability analysis of the chord as a bar in compression is necessary. Unfortunately, the method cannot be applied to contemporary truss bridges without verticals, that usually have independent cross-beam decks (the cross-beams attached to truss chords at their nodes and between them). This is the motivation for the analysis resulting in the method of setting the stiffness of the equivalent U-frame for the aforementioned truss bridges. Truss girders of both, gussetless and gusseted, joints are taken into account.

A Study on the Vertical Temperature Difference of Steel Box Girder Bridge by Field Measurement (실측에 의한 강박스거더교의 상하 온도차에 대한 연구)

  • Lee, Seong-Haeng;Park, Young-Chun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.545-551
    • /
    • 2018
  • For domestic application of the temperature gradient model proposed by foreign design standards, a specimen of steel box girder bridge was fabricated with the following dimensions: 2.0 m width, 2.0 m height and 3.0 m length. Temperature was measured using 24 temperature gauges during the summer of 2016. The reliability of the measured data was verified by comparing the measured air temperature with the ambient air temperature of the Korea Meteorological Administration. Of the measured gauges, four temperature gauges that can be compared with the temperature difference of the Euro code were selected and used to analyze the distribution of the measured temperatures at each point. The reference atmospheric temperature for the selection of the maximum temperature difference was determined by considering the standard error. Maximum and minimum temperatures were calculated from the four selected points and the resulting temperature difference was calculated. The model for the temperature difference in the steel box girder bridge was shown by graphing the temperature difference. Compared to the temperature distribution of the Euro code, the presented temperature difference model showed a temperature difference of $0.9^{\circ}C$ at the top and of $0.3^{\circ}$ to $0.4^{\circ}C$ at the intermediate part. These results suggested that the presented model could be considered relatively similar to the Euro code The calculated standard error coefficient was 2.71 to 2.84 times the standard error and represents a range of values. The proposed temperature difference model may be used to generate basic data for calculating the temperature difference in temperature load design.

An Evaluation of Flexural Performance of Composite Beam with Ultra High Performance Concrete Deck and Inverted T-Shaped Steel Girder (초고강도 콘크리트 바닥판과 역T형 강재 합성보의 휨 성능 평가)

  • Yoo, Sung-Won;Joh, Chang-Bin;Choi, Kwang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.64-71
    • /
    • 2016
  • In this paper, when the composite beam is made with UHPC deck and steel girder, the steel girder takes the form of the inverted-T shape without top flange because of high strength and stiffness of UHPC deck. There is no evaluation by experiment and analysis about the shear connector behavior on the web of steel girder and flexural behavior of inverted-T shape composite beam. By this reason, this study compares between experiment and analysis by using tension softening model of UHPC on the basis of flexural test results of 16 members considering compressive strength of UHPC, spacing of stud and thickness of deck as variables. The results of tensile strength of UHPC by inverse analysis were 6.57 MPa(in case of 120 MPa) and 9.57 MPa(in case of 150 MPa). In case of the test members with small stud spacing, the results of analysis and test were close clearly, and the test members with thick deck and low UHPC compressive strength also similar, but effects were small. As it compared between analysis and experiment totally, the results of analysis and experiment agree well. So the tension softening model of UHPC is reasonably reflected on the real behavior of composite beam of UHPC.

Finite strip method in probabilistic fatigue analysis of steel bridges

  • Li, W.C.;Cheung, M.S.
    • Steel and Composite Structures
    • /
    • v.2 no.6
    • /
    • pp.429-440
    • /
    • 2002
  • A finite strip method is developed for fatigue reliability analysis of steel highway bridges. Flat shell strips are employed to model concrete slab and steel girders, while a connection strip is formed using penalty function method to take into account eccentricity of girder top flange. At each sampling point with given slab thickness and modulus ratio, a finite strip analysis of the bridge under fatigue truck is performed to calculate stress ranges at fatigue-prone detail, and fatigue failure probability is evaluated following the AASHTO approach or the LEFM approach. After the failure probability is integrated over all sampling points, fatigue reliability of the bridge is determined.

Evaluation of Characteristics on Negative Reactions of Simply Supported Curved Box Girder Bridges with Elastomeric Bearings (탄성받침을 가지는 단경간 곡선 강박스거더 교량의 부반력 특성평가)

  • Kim, Kyungsik;Lee, Heejeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.161-168
    • /
    • 2015
  • Horizontally curved bridges are subjected to torsional loads by their vertical dead loads only as well as eccentric loads, which cause negative reactions at supports. In this paper, effects of bridge curvature on vertical reactions at supports are investigated for 48.8 m length simple span steel box girder bridges with elastomeric bearings by varying curvature angle from 0.49 to 1.35 rad. In order to expect magnitude and direction of reactions including possibility of negative reactions, reaction evaluation equations have been analytically developed by separating a superstructure of curved bridge into independent components. Concrete slabs and bottom flanges in steel box section are assumed geometrical annular sectors in area dimension, and top flanges and webs that have very narrow projected areas are assumed geometrical arcs in line dimension. Proposed equations have relatively simple forms and prediction values are on very good agreement with those from finite element analyses by difference of 1% order.

Analysis and Prediction for Abutment Behavior of Prestressed Concrete Girder Integral Abutment Bridges (프리스트레스트 콘크리트 거더 일체식 교량의 교대 거동 해석과 예측)

  • Kim, Woo-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.667-674
    • /
    • 2011
  • This paper discusses the analysis method of prestressed concrete girder integral abutment bridges for a 75-year bridge life and the development of prediction models for abutment displacements under thermal loading due to annual temperature fluctuation and time-dependent loading. The developed nonlinear numerical modeling methodologies considered soil-structure interaction between supporting piles and surrounding soils and between abutment and backfills. Material nonlinearity was also considered to simulate differential rotation in construction joints between abutment and backwall. Based on the numerical modeling methodologies, a parametric study of 243 analysis cases, considering five parameters: (1) thermal expansion coefficient, (2) bridge length, (3) backfill height, (4) backfill stiffness, and (5) pile soil stiffness, was performed to established prediction models for abutment displacements over a bridge life. The parametric study results revealed that thermal expansion coefficient, bridge length, and pile-soil stiffness significantly influenced the abutment displacement. Bridge length parameter significantly influenced the abutment top displacement at the centroid of the superstructure, which is similar to the free expansion analysis results. Developed prediction model can be used for a preliminary design of integral abutment bridges.