• Title/Summary/Keyword: Tooth simulation

Search Result 120, Processing Time 0.025 seconds

Effect Analysis of Carrier Pinhole Position Error on the Load Sharing and Load Distribution of a Planet Gear (캐리어의 핀홀 위치 오차에 따른 유성기어의 하중 분할 및 하중 분포 영향 분석)

  • Kim, Jeong-Gil;Park, Young-Jun;Lee, Geun-Ho;Kim, Young-Joo;Oh, Joo-Young;Kim, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.66-72
    • /
    • 2016
  • Gearboxes are mechanical components that transmit power by adjusting input and output speed and torque. Their design requirements include small size, light weight, and long lifespan. We have investigated the effects of carrier pinhole position error on the load sharing and load distribution characteristics of a planetary gear set with four planet gears. The simulation model for a simple planetary gear set was developed and verified by comparing analytical results with a putative model. Then, we derived the load sharing and load distribution characteristics under various pinhole position error conditions using the prototypical simulation model. The results showed that the mesh load factor and face load factor increased with the pinhole position error, which then influenced the safety factor for tooth bending strength and surface durability.

Analysis of the load distribution and contact safety factor of PTO gears of a 71 kW class agricultural tractor

  • Baek, Seung-Min;Kim, Wan-Soo;Kim, Yeon-Soo;Lee, Nam-Gyu;Kim, Nam-Hyeok;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.327-335
    • /
    • 2020
  • The purpose of this study was to analyze the load distribution and contact safety factor for the power take off (PTO) gear of a 71 kW class agricultural tractor. In this study, a simulation model of the PTO gear-train was developed using Romax DESGINER. The face load factor and contact safety factor were calculated using ISO 6336:2006. The simulation time was set at 2,736 hours considering the lifetime of the tractor, and the simulation was performed for each PTO gear stage at the engine rated power conditions. As a result of the simulation, the face load factors for the driving gear at the PTO 1st, 2nd and 3rd stages were 1.644, 1.632, and 1.341, respectively. The contact safety factors for the driving gear at the PTO 1st, 2nd and 3rd stages were 1.185, 1.216, and 1.458, respectively. As the PTO gear stage was increased, the face load factor decreased, and the contact safety factor increased. The load distributions for all the PTO gears were concentrated to the right of the tooth width. This causes stress concentrations and shortens the lifespan of the gears. Therefore, it is necessary to improve the face load factor and the contact safety factor with macro-geometry and micro-geometry.

Planning of Dental Implant Placement Using 3D Geometric Processing and Finite Element Analysis (3차원 기하 처리와 유한요소 분석을 이용한 치아 임플란트 식립 계획 수립)

  • Park, Hyung-Wook;Park, Chul-Woo;Kim, Myong-Soo;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.4
    • /
    • pp.253-261
    • /
    • 2012
  • In order to make dental implant surgery successful, it is important to perform proper planning for dental implant placement. In this paper, we propose a decent approach to dental implant placement planning based on geometric processing of 3D models of jawbones, a nerve curve and neighboring teeth around a missing tooth. Basically, the minimum enclosing cylinders of the neighboring teeth around the missing tooth are properly used to determine the position and direction of the implant placement. The position is computed according to the radii of the cylinders and the center points of their top faces. The direction is computed by the weighted average of the axes of the cylinders. For a cylinder whose axis passes the position along the direction, its largest radius and longest length are estimated such that it does not interfere with the neighboring teeth and the nerve curve, and they are used to select the size and type of an implant fixture. From the geometric and spatial information of the jawbones, the teeth and the fixture, we can construct the 3D model of a surgical guide stent which is crucial to perform the drilling operation with ease and accuracy. We have shown the validity of the proposed approach by performing the finite element analysis of the influence of implant placement on bone stress distribution. Adopted in 3D simulation of dental implant placement, the approach can be used to provide dental students with good educational contents. It is also expected that, with further work, the approach can be used as a useful tool to plan for dental implant surgery.

Comparison of inclination and vertical changes between single-wire and double-wire retraction techniques in lingual orthodontics

  • Hung, Bui Quang;Hong, Mihee;Yu, Wonjae;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.50 no.1
    • /
    • pp.26-32
    • /
    • 2020
  • Objective: The Heat Induction Typodont System (HITS), used in some recent studies, has a distinct advantage over previous tooth movement simulation methods. This study aimed to compare inclination and vertical changes between the single-wire and double-wire techniques during en masse retraction with different lengths of lever arms in lingual orthodontics using an upgraded version of the HITS. Methods: Duet lingual brackets, which have two main slots, were used in this study. Forty samples were divided into four groups according to the length of the lever arm (3-mm or 6-mm hook) and the retraction wire (single-wire or double-wire). Four millimeters of en masse retraction was performed using lingual appliances. Thereafter, 3-dimensional-scanned images of the typodont were analyzed to measure inclination and vertical changes of the anterior teeth. Results: Incisor inclination presented more changes in the single-wire groups than in the double-wire groups. However, canine inclination did not differ between these groups. Regarding vertical changes, only the lateral incisors in the single-wire groups presented significantly larger values than did those in the double-wire groups. Combining the effect of hook lengths, among the four groups, the single-wire group with the 3-mm hook had the highest value, while the double-wire group with the 6-mm hook showed the least decrease in crown inclination and extrusion. Conclusions: The double-wire technique with an extended lever arm provided advantages over the single-wire technique with the same lever arm length in preventing torque loss and extrusion of the anterior teeth during en masse retraction in lingual orthodontics.

The study of PWM IC design for SMPS (SMPS 용 PWM IC 설계)

  • Choi In-Chul;Lim Dong-Jo;Cho Han-Jo;Koo Yong-Seo
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.557-560
    • /
    • 2004
  • In this study, we design the one-chip PWM IC for SMPS (Switching Mode Power Supply) application. We determine the IC spec. and simulated each block of PWM IC (Reference, Error amp., Comparator, Oscillator) with Smart Spice (SILVACO Circuit Simulation Tool). Reference circuits generate constant voltage(5V) in the various of power supply and temperature condition. Error amp. is designed with large DC gain (${\simeq}65dB$), unity frequency (${\simeq}190kHz$) and large PM($75^{\circ}$).Saw tooth generators operate with 20K oscillation frequency (external resistor, capacitor).

  • PDF

A Study on Crack Fault Diagnosis of Wind Turbine Simulation System (풍력발전기 모사 시스템에서의 균열 결함 진단에 대한 연구)

  • Bae, Keun-Ho;Park, Jong-Won;Kim, Bong-Ki;Choi, Byung-Oh
    • Journal of Applied Reliability
    • /
    • v.14 no.4
    • /
    • pp.208-212
    • /
    • 2014
  • An experimental gear-box was set-up to simulate the real situation of the wind-turbine. Artificial cracks of different sizes were machined into the gear. Vibration signals were acquired to diagnose the different crack fault conditions. Time-domain features such as root mean square, variance, kurtosis, normalized 6th central moments were used to capture the characteristics of different crack conditions. Normal condition, 1 mm crack condition, 2mm crack condition, 6mm crack condition, and tooth fault condition were compared using ANFIS and DAG-SVM methods, and three different DAG-SVM models were compared. High-pass filtering improved the success rates remarkably in the case of DAG-SVM.

Transmission Error Analysis of the Helical Gears for the Elevator (엘리베이터용 헬리컬기어의 전달오차 해석)

  • Park, Chan-Il;Kim, Dae-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.470-475
    • /
    • 2001
  • The elevator gear box with the helical gears needs to be developed instead of the one with the worm gears to improve the efficiency. In order to develop the gear box, the analytical tool to predict the helical gear noise is necessary to meet customer's noise requirement. Gear noise is related to the loaded transmission error. Therefore, the simulation program for the loaded transmission error analysis of the helical gears is developed in this study. Using the developed program, the effects of tooth modification such as tip relief and the extent of tip relief are investigated. Finally, the procedures to determine the tip relief and the extent of tip relief are proposed.

  • PDF

A Collision Model for Haptic Simulation of Tooth Preparation (치아 형성의 햅틱 시뮬레이션을 위한 충돌 모델)

  • Kim, Ki-Min;Kim, Jai-Hyun;Park, Jin-Ah
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.438-441
    • /
    • 2011
  • 가상현실기반 충치치료 훈련 시스템에서 필수적으로 구현되어야 하는 부문은 절삭도구인 버(bur)를 이용하여 치아를 삭제하는 과정이다. 치아에 비하여 시술도구의 크기가 상대적으로 매우 작기 때문에 보다 정교한 충돌감지뿐만 아니라 치아 삭제에 따른 형태변형에 동기화된 정확한 충돌 모델이 요구된다. 따라서 본 논문에서는 디스턴스 필드를 이용한 볼륨 모델을 치아에 적용하고 이를 형태변형 시각화와 햅틱 렌더링에 함께 이용하는 실시간 충돌 모델을 제안한다. 또한 안정적인 햅틱 피드백을 위해 버의 포인트 쉘 생성 방법과 시간 응집도에 따른 점 접촉 모델 가속화 방법을 제시한다.

Transmission Error Analysis of the Helical Gears for the Elevator (엘리베이터용 헬리컬기어의 전달오차 해석)

  • Park, Chan-Il;Kim, Dae-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2695-2702
    • /
    • 2002
  • The elevator gear box with the helical gears needs to be developed instead of the one with the worm gears to improve the efficiency. In order to develop the gear box, the analytical tool to predict the helical gear noise is necessary to meet customer's noise requirement. Gear noise is related to the loaded transmission error. Therefore, the simulation program fer the loaded transmission error analysis of the helical gears is developed in this study. Using the developed program, the effects of tooth modification such as tip relief and the extent of tip relief are investigated. Finally, the procedures to determine the tip relief and the extent of tip relief are proposed.

Simulation of Enveloping Helical Gear Generation by Shaping Operation (헬리컬 인벨로핑 기어의 Shaping 가공 시뮬레이션)

  • Kim Hyung-Mo;Lee Ki-Yong;Lee Jae-Seol;Park Soon-Sub
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.253-254
    • /
    • 2006
  • In this investigation, the authors propose a novel method of Enveloping Helical gear generation by shaping operation and a math model to simulate its manufacturing process. The tooth geometry of the Enveloping Helical Gear is analytically determined by simulating the conjugate motion between the workpiece(Enveloping Helical gear) and cutting tool(shaper cutter) in the generation process. It is expected that such math modeling capability will give engineers an opportunity to correct manufacturing related issues in the design phase and thereby reduce the developing period.

  • PDF