• Title/Summary/Keyword: Tooth Protein

Search Result 111, Processing Time 0.031 seconds

Demineralized dentin matrix combined with recombinant human bone morphogenetic protein-2 in rabbit calvarial defects

  • Um, In-Woong;Hwang, Suk-Hyun;Kim, Young-Kyun;Kim, Moon-Young;Jun, Sang-Ho;Ryu, Jae-Jun;Jang, Hyon-Seok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.42 no.2
    • /
    • pp.90-98
    • /
    • 2016
  • Objectives: The aim of this study was to compare the osteogenic effects of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) in rabbit calvarial defects with DDM and anorganic bovine bone (ABB) combined with rhBMP-2. Materials and Methods: Four round defects with 8-mm diameters were created in each rabbit calvaria. Each defect was treated with one of the following: 1) DDM, 2) ABB/rhBMP-2, or 3) DDM/rhBMP-2. The rhBMP-2 was combined with DDM and ABB according to a stepwise dry and dip lyophilizing protocol. Histological and microcomputed tomography (${\mu}CT$) analyses were performed to measure the amount of bone formation and bone volume after 2- and 8-week healing intervals. Results: Upon histological observation at two weeks, the DDM and ABB/rhBMP-2 groups showed osteoconductive bone formation, while the DDM/rhBMP-2 group showed osteoconductive and osteoinductive bone formation. New bone formation was higher in DDM/rhBMP-2, DDM and ABB decreasing order. The amounts of bone formation were very similar at two weeks; however, at eight weeks, the DDM/rhBMP-2 group showed a twofold greater amount of bone formation compared to the DDM and ABB/rhBMP-2 groups. The ${\mu}CT$ analysis showed markedly increased bone volume in the DDM/rhBMP-2 group at eight weeks compared with that of the DDM group. Notably, there was a slight decrease in bone volume in the ABB/rhBMP-2 group at eight weeks. There were no significant differences among the DDM, ABB/rhBMP-2, and DDM/rhBMP-2 groups at two or eight weeks. Conclusion: Within the limitations of this study, DDM appears to be a suitable carrier for rhBMP-2 in orthotopic sites.

EXPRESSION AND FUNCTION OF OD314, APIN PROTEIN, DURING AMELOBLAST DIFFERENTIATION AND AMELOGENESIS (법랑모세포 분화와 법랑질 형성과정에서 OD314, Apin protein의 발현 및 기능)

  • Park, Jong-Tae;Choi, Yong-Seok;Kim, Heung-Joong;Jeong, Moon-Jin;Oh, Hyun-Ju;Shin, In-Cheol;Park, Joo-Cheol;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.6
    • /
    • pp.437-444
    • /
    • 2006
  • This study was aimed to elucidate the biological function of OD314 (Apin protein), which is related to ameloblast differentiation and amelogenesis. Apin protein, calcifying epithelial odontogenic (pindborg) tumors (CEOTs)-associated amyloid, were isolated from CEOTs, and has similar nucleotide sequences to OD314. We examined expression of the OD314 mRNA using in-situ hybridization during tooth development in mice. Expression of OD314 and several enamel matrix proteins were examined in the cultured ameloblast cell line up to 28 days by reverse transcription-polymerase chain reaction (RT-PCR) amplification. After inactivation and over-expression of the OD314 gene in ameloblast cell lines using U6 vectordriven RNA interference and CMV-OD314 construct, RT-PCR were performed to evaluate the effect of the OD314 during amelogenesis. The results were as follows: 1. In in-situ hybridization, OD314 mRNAs were more strongly expressed in ameloblast than odontoblast. 2. When ameloblast cells were cultured in the diffcrentiation and mineralization medium for 28 days, the tuftelin mRNA expression was maintained from the beginning to day 14, and then gradually decreased to day 28. The expressions of amelogenin and enamelin were gradually decreased according to the ameloblast differentiation. 3. Inactivation of OD314 by U6-OD314 siRNA construct down-regulated the expression of OD314, MMP-20, and tuftelin, whereas over-expression of OD314 by CMV-OD314 construct up-regulated the expression of OD314 and MMP-20 without change in tuftelin. These results suggest that OD314 is considered as an ameloblast-enriched gene and may play the important roles in ameloblast differentiation and mineralization.

Generation of antibodies against N-terminus fragment of AgI/II protein from Streptococcus mutans GS-5 (연쇄상구균(Streptococcus mutans GS-5)의 항원단백질 AgI/II의 N-terminus절편에 대한 항체형성)

  • Han, Ji-Hye;Baik, Byeong-Ju;Yang, Yeon-Mi;Park, Jeong-Yeol;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.3
    • /
    • pp.401-410
    • /
    • 2006
  • Dental caries results from localized demineralization of tooth enamel by acids of bacterial origin produced from the fermentation of dietary sugars. A group of related oral bacteria, collectively known as mutans streptococci, are implicated as the primary etiological agents of human caries. Within this group, Streptococcus mutans has been known as a causative agent for dental caries. As well as acid production yielding the demineralization of tooth enamel, adherence and colonization of S. mutans to the teeth are also important for their virulence Cell-surface fibrillar proteins, which mediate adherence to the salivary pellicle are virulence components of mutans streptococci, and primary candidates for a human caries vaccine. Here we report that the AgI/II gene from S. mutans GS-5 were cloned by PCR amplification of the bacterial chromosomal DNA and the integrity of cloned genes were confirmed by nucleotide sequencing. Sequence analyses showed the sequence alignment of 280 nucleotides between the cloned AgI/II and the reported sequence of S. mutans GS-5 showed the perfect match The cloned genes which signal nucleotide was truncated, were transferred into bacterial expression vector and the recombinant proteins were purified as His-tag fusion proteins In order to generate polyclonal antibodies against the recombinant proteins, AgI/II mr, some $100{\mu}g$ of the proteins was injected into mice three times. It can be used for an effective vaccine production to prevent dental caries caused by pathogenic S. mutans.

  • PDF

Morphology of Tooth and Smad4 Expression in NFI-C Deficient Mouse (Nuclear Factor I-C 결손생쥐에서 치아의 형태학적 변화와 Smad4의 발현)

  • Bae, Hyun-Sook;Kim, Hye-Mi;Cho, Young-Sik;Park, Su-Jin;Choi, Moon-Sil
    • Journal of dental hygiene science
    • /
    • v.10 no.5
    • /
    • pp.395-401
    • /
    • 2010
  • Over expression of TGF-${\beta}1$ revealed the same phenotype as NFI-C deficient mouse. It has been reported that NFI-C deficient mice demonstrated abnormal odontoblast differentiation and aberrant dentin formation during root development. In the present study, in order to investigate the histological differences between wild type (WT) mouse and NFI-C deficient mouse, we compared morphological characteristics and smad4 expression between those mice. Hematoxyline-eosin (H-E) staining was used to investigate morphological changes and immunohistochemistry was also performed to observe the Smad4 expression pattern. In H-E staining, incisor of NFI-C deficient mouse showed an open area in the lingual root, irregular odontoblasts and osteodentin. Also, NFI-C deficient mouse showed short root and osteodentin in molar. In addition, Smad4 protein was strongly expressed in NFI-C deficient mouse compared with wild type. These findings suggest that NFI-C deficiency affects odontoblast differentiation and result in the formation of abnormal roots. Therefore, balancing between NFI-C and TGF-${\beta}$ signaling including Smad4 is important for the regulation of normal odontoblast differentiation and dentin formation.

A Novel RUNX2 Mutation in a Korean Family with Cleidocranial Dysplasia (한국인 쇄골 두개 이형성증 가족에서의 RUNX2 유전자 돌연변이)

  • Lee, Ji Won;Song, Jisoo;Shin, Teo Jeon;Hyun, Hong-Keun;Kim, Young-Jae;Lee, Sang-Hoon;Kim, Jongbin;Kim, Jung-Wook
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.4
    • /
    • pp.409-415
    • /
    • 2019
  • Cleidocranial dysplasia (CCD) is an autosomal-dominant disease characterized by the delayed closure of cranial sutures, defects in clavicle formation, supernumerary teeth, and delayed tooth eruption. Defects in the Runt-related transcription factor 2 (RUNX2), a master regulator of bone formation, have been identified in CCD patients. The aim of this study was to identify the molecular genetic causes in a CCD family with delayed tooth eruption. The 23-year-old female proband and her mother underwent clinical and radiographic examinations, and all coding exons of the RUNX2 were sequenced. Mutational analysis revealed a single nucleotide deletion mutation (NM_001024630.4 : c.357delC) in exon 3 in the proband and her mother. The single C deletion would result in a frameshift in translation and introduce a premature stop codon [p.(Asn120Thrfs*24)]. This would result in the impaired function of RUNX2 protein, which may be the cause of delayed eruption of permanent teeth in the family.

THE STUDY ON EFFECTS OF THE PLATELET-DERIVED GROWTH FACTOR-AA, BB ON THE CELLULAR ACTIVITY OF THE HUMAN PERIODONTAL LIGAMENT CELLS (Platelet-derived growth factor-AA, BB가 치주인대세포의 세포활성에 미치는 영향에 대한 연구)

  • Oh, Sang-Deok;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.2
    • /
    • pp.303-320
    • /
    • 1994
  • Current acceptable methods For promotin gperiodontal regeneration are base on removal of diseased soft tissue, root treatment, guided tissue regeneration, inteoduction of new graft materials and biological mediators. Platelet-derived growth factor(PDGF) is one of polypeptide growth factor. PDGF has been reported as a biological mediator which regulates activities of wound healing process including the cell proliferation, migration and metabolism. The purposes of this study is to evaluate the effects of PDGF-AA, BB on the periodontal ligament cells to use as a regeneration promoting agent of periodontal tissue. Human periodontal ligament cells were prepared from the first premolar tooth extracted for the orthodontic treatment and were cultured in DMEM/10% FBS at the $37^{\circ}C$, 5% $CO_2$ incubator. Author measured the DNA synthesis, total protein, collagen and noncollagenous protein synthesis and alkaline phosphatase activity according to the concentration of PDGF-AA and BB(0, 0.1, 1, 10, 100ng/ml). The results were as follows : The DNA synthetic activity was increased dose dependently by PDGF-AA and BB. The maximum mitogenic effect was at the 100ng/ml of PDGF-AA and 10ng/ml of PDGF-BB. The total protein, collagen and noncollagen systhesis was increased dose dependently by PDGF-AA and BB. The % of collagen was slightly decresed according to the concentration of PDGF-AA and BB. The effect of PDGF-AA and BB were not specific for collagen synthesis since it also increased noncollagenous protein synthesis. The effect of PDGF-AA and BB on alkaline phosphatase activity did not show any significant, meanwhile the alkaline phosphatase activity of 14 days group showed significnat increase. In conclusion, PDGF-AA and BB may have important roles in stimulation of DNA synthesis in human periodontal ligament cells, which means an increase in collagen-synthesizing cells, and may be useful for clinical application in periodontal regenerative procedures.

  • PDF

Cytotoxicity and biocompatibility of Zirconia (Y-TZP) posts with various dental cements

  • Shin, Hyeongsoon;Ko, Hyunjung;Kim, Miri
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.3
    • /
    • pp.167-175
    • /
    • 2016
  • Objectives: Endodontically treated teeth with insufficient tooth structure are often restored with esthetic restorations. This study evaluated the cytotoxicity and biological effects of yttria partially stabilized zirconia (Y-TZP) blocks in combination with several dental cements. Materials and Methods: Pairs of zirconia cylinders with medium alone or cemented with three types of dental cement including RelyX U200 (3M ESPE), FujiCEM 2 (GC), and Panavia F 2.0 (Kuraray) were incubated in medium for 14 days. The cytotoxicity of each supernatant was determined using 3-(4,5-dimethylthiazole- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays on L929 fibroblasts and MC3T3-E1 osteoblasts. The levels of interleukin-6 (IL-6) mRNA were evaluated by reverse transcription polymerase chain reaction (RT-PCR), and IL-6 protein was evaluated by enzyme-linked immunosorbent assays (ELISA). The data were analyzed using one-way ANOVA and Tukey post-hoc tests. A p < 0.05 was considered statistically significant. Results: The MTT assays showed that MC3T3-E1 osteoblasts were more susceptible to dental cements than L929 fibroblasts. The resin based dental cements increased IL-6 expression in L929 cells, but reduced IL-6 expression in MC3T3-E1 cells. Conclusions: Zirconia alone or blocks cemented with dental cement showed acceptable biocompatibilities. The results showed resin-modified glass-ionomer based cement less produced inflammatory cytokines than other self-adhesive resin-based cements. Furthermore, osteoblasts were more susceptible than fibroblasts to the biological effects of dental cement.

Effects of clarithromycin treatment in scrub typhus in children: comparison with chloramphenicol and azithromycin

  • Lee, Min;Kim, June;Jo, Dae Sun
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.4
    • /
    • pp.124-127
    • /
    • 2017
  • Purpose: Chloramphenicol and tetracycline are not recommended for treating scrub typhus in pediatric patients because of potential side effects, such as aplastic anemia or tooth discoloration. While clarithromycin has recently been used in adults, few reports have been published on its effects in pediatric patients. We report the clinical profiles of pediatric scrub typhus and the effects of clarithromycin on scrub typhus in children. Methods: We retrospectively analyzed medical records of 56 children with scrub typhus who were admitted between 2004 and 2013 to Chonbuk National University Hospital, Jeonju, Korea. Cases were divided into 3 groups based on the treatment drug (chloramphenicol, azithromycin, and clarithromycin). We compared their clinical manifestations and laboratory findings. Results: All patients exhibited fever and rash. Other common clinical manifestations were eschars (66%), lymphadenopathy (48%), upper respiratory symptoms (42%), abdominal pain (32%), and hepatosplenomegaly (14%). Elevated levels of C-reactive protein, erythrocyte sedimentation rates, aspartate transaminase, and alanine transaminase were detected in 95%, 96%, 84%, and 77% of patients, respectively. Additionally, decreased platelet and white blood cell levels were observed in 43% and 36% of patients, respectively. There were no statistical differences between the treatment groups in mean age (P=0.114) or sex (P=0.507). However, time to defervescence after the treatments differed significantly, being the shortest in the clarithromycin group (P=0.019). All patients recovered without complications related to the disease or drugs. Conclusion: Clarithromycin was as effective as chloramphenicol and azithromycin in pediatric scrub typhus patients and may be used as a first-line treatment drug.

Complex dental anomalies in a belatedly diagnosed cleidocranial dysplasia patient

  • Lu, Hui;Zeng, Binghui;Yu, Dongsheng;Jing, Xiangyi;Hu, Bin;Zhao, Wei;Wang, Yiming
    • Imaging Science in Dentistry
    • /
    • v.45 no.3
    • /
    • pp.187-192
    • /
    • 2015
  • Cleidocranial dysplasia (CCD) is a rare congenital disorder, typically characterized by persistently open skull sutures, aplastic or hypoplastic clavicles, and supernumerary teeth. Mutations in the gene encoding the runt-related transcription factor 2 (RUNX2) protein are responsible for approximately two thirds of CCD patients. We report a 20-year-old CCD patient presenting not only with typical skeletal changes, but also complex dental anomalies. A previously undiagnosed odontoma, 14 supernumerary teeth, a cystic lesion, and previously unreported fused primary teeth were discovered on cone-beam computed tomography (CBCT) scans. Mutation analysis identified the causal c.578G>A (p.R193Q) mutation in the RUNX2 gene. At 20 years of age, the patient had already missed the optimal period for dental intervention. This report describes the complex dental anomalies in a belatedly diagnosed CCD patient, and emphasizes the significance of CBCT assessment for the detection of dental anomalies and the importance of early treatment to achieve good outcomes.

Effect of FGF-2, TGF-β-1, and BMPs on Teno/Ligamentogenesis and Osteo/Cementogenesis of Human Periodontal Ligament Stem Cells

  • Hyun, Sun-Yi;Lee, Ji-Hye;Kang, Kyung-Jung;Jang, Young-Joo
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.550-557
    • /
    • 2017
  • The periodontal ligament (PDL) is the connective tissue between tooth root and alveolar bone containing mesenchymal stem cells (MSC). It has been suggested that human periodontal ligament stem cells (hPDLSCs) differentiate into osteo/cementoblast and ligament progenitor cells. The periodontitis is a representative oral disease where the PDL tissue is collapsed, and regeneration of this tissue is important in periodontitis therapy. Fibroblast growth factor-2 (FGF-2) stimulates proliferation and differentiation of fibroblastic MSCs into various cell lineages. We evaluated the dose efficacy of FGF-2 for cytodifferentiation of hPDLSCs into ligament progenitor. The fibrous morphology was highly stimulated even at low FGF-2 concentrations, and the expression of teno/ligamentogenic markers, scleraxis and tenomodulin in hPDLSCs increased in a dose dependent manner of FGF-2. In contrast, expression of the osteo/cementogenic markers decreased, suggesting that FGF-2 might induce and maintain the ligamentogenic potential of hPDLSCs. Although the stimulation of tenocytic maturation by $TGF-{\beta}1$ was diminished by FGF-2, the inhibition of the expression of early ligamentogenic marker by $TGF-{\beta}1$ was redeemed by FGF-2 treatment. The stimulating effect of BMPs on osteo/cementogenesis was apparently suppressed by FGF-2. These results indicate that FGF-2 predominantly differentiates the hPDLSCs into teno/ligamentogenesis, and has an antagonistic effect on the hard tissue differentiation induced by BMP-2 and BMP-4.