• Title/Summary/Keyword: Tool-path Generation

Search Result 179, Processing Time 0.031 seconds

A Stock Removal Cycle with Collision Detection Function for Turning Operation (충돌회피 기능을 가진 선삭용 황정삭 싸이클)

  • 임상묵;강성균;최종률
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1050-1053
    • /
    • 1995
  • A stock removal cycle is developed as a programming tool of the CNC lathe. This cycle support the easiness and swifness of a part program generation in the shopfloor. The cycle contains the function of tool path generation of rough/finish cutting, of avoidance air-cut for non-cylindrical (die-casted, forged) workpiece, and of the tool collisopn detection/aviodance. Consequently the intelligent stock removal cycle results in improving the productivity and safety of CNC lathe.

  • PDF

Dwell time calculation algorithm in aspherical lens polishing with discrete annular tool path (이산 환형 방식의 비구면 렌즈 연마 경로에서 체재 시간 제산 알고리듬)

  • Lee Ho Cheol;Yang Min Yang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.14-20
    • /
    • 2005
  • This paper describes a dwell time calculation algorithm for polishing tool path generation in the small toot polishing process of the axis-symmetrical lens. Generally dwell time control in the polishing machines means that small polishing tool stays for a dwell time at the specific surface position to get the expected polishing depth. Polishing depth distribution on an aspherical lens surface consists of the superposition of the local polishing depth at the each dwell position. Therefore, tool path generation needs each dwell time together with tool positioning data during the polishing tool movements on the aspherical lens surface. The linear algebraic equation of removal depth removal matrix and dwell time is formulated. Parametric effects such as the dwell d interval are simulated to validate the dwell time calculation algorithm.

A study on the Tool Path Generation of High-Speed Machining by the Distortion of Original Tool Path (지령 경로의 왜곡에 의한 고속가공 경로의 생성에 관한 연구)

  • 이철수;이제필
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.15-28
    • /
    • 1998
  • Recently may investigations have been studied on the high-speed machining by using machine tools. A CNC machine tool makes some tool path errors caused by software acceleration/deceleration. The faster a cutting feedrate is, the bigger the tool path errors are. Some known methods reduce these kinds of errors, but they make the total cutting time increased. This paper presents a feed-forward algorithm that can be generated by distorting the original tool path, and reduces the tool path errors and the total cutting time. The algorithm to generate a new tool path is represented as following; 1)calculating each distance of software acceleration/deceleration between two adjacent blocks, 2) estimating the distorted distance which is the adjacent-ratio-constant(k1, k2) multiply the distance of software acceleration/deceleration, 3) generating a 3-degree Bezier curve approximating the distorted tool path, 4) symmetrically transforming the Bezier curve about the intersection point between two blocks, and 5) connecting the transformed Bezier curve with the original tool path. The algorithm is applied to FANUC 0M. The study is to promote the high-precision machining and to reduce the total cutting time.

  • PDF

A Study on Tool Path Error Control for Disk Cams in a Five-Axis CNC Machining Center

  • Kwon, Soon-Man;Shin, Joong-Ho;Yoo, Geun-Jong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1012-1016
    • /
    • 2004
  • In this paper, we propose a simple but optimized NC code generating technique for disk cams by means of tool path error control in a five-axis CNC machining center. Using the geometric theorem of the triangle made between manufacturing points and error checkpoint, the tool path error has been studied for disk cams profile generation and an improvement in the profile has been obtained. Then, based on the present manufacturing approach a computer program is developed on $C^{++}$ language to perform and to verify the shape design, the manufacturing simulation, and the optimized generation of the NC code.

  • PDF

Machining Tool Path Generation for Point Set

  • Park, Se-Youn;Shin, Ha-Yong
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.45-53
    • /
    • 2009
  • As the point sampling technology evolves rapidly, there has been increasing need in generating tool path from dense point set without creating intermediate models such as triangular meshes or surfaces. In this paper, we present a new tool path generation method from point set using Euclidean distance fields based on Algebraic Point Set Surfaces (APSS). Once an Euclidean distance field from the target shape is obtained, it is fairly easy to generate tool paths. In order to compute the distance from a point in the 3D space to the point set, we locally fit an algebraic sphere using moving least square method (MLS) for accurate and simple calculation. This process is repeated until it converges. The main advantages of our approach are : (1) tool paths are computed directly from point set without making triangular mesh or surfaces and their offsets, and (2) we do not have to worry about no local interference at concave region compared to the other methods using triangular mesh or surface model. Experimental results show that our approach can generate accurate enough tool paths from a point set in a robust manner and efficiently.

Rough Cut Tool Path Planning in Fewer-axis CNC Machinig (저축 CNC 환경에서의 황삭가공)

  • 강지훈;서석환;이정재
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.19-27
    • /
    • 1997
  • This paper presents rough cut tool path planning for the fewer-axis machine consisting of a three-axis CNC machine and a rotary indexing table. In the problem dealt with in this paper, the tool orientation is "intermediately" changed, distinguished from the conventional problem where the tool orientation is assumed to be fixed. The developed rough cut path planning algorithm tries to minimize the number of tool orientation (setup) changes together with tool changes and the machining time for the rough cut by the four procedures: a) decomposition of the machining area based on the possibility of tool interference (via convex hull operation), b) determination of the optimal tool size and orientation (via network graph theory and branch-and bound algorithm), c) generation of tool path for the tool and orientation (based on zig-zag pattern), and d) feedrate adjustment to maintain the cutting force at an operation level (based on average cutting force). The developed algorithms are validated via computer simulations, and can be also used in pure fiveaxis machining environment without modification.

  • PDF

Tool Path Generation of Multi-Patch Sculptured Surface with Reparameterization (여러 개의 패치로 이루어진 곡면에서 재매개변수화를 통한 공구경로 생성)

  • 이성근
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.119-126
    • /
    • 2000
  • Recently, according to the various taste of consumers, the design of a product is changed variously and complicatedly. The complicated product is not usually constructed with one path but multi-path. By the way, in machining, higher precision and the reduction of leading and machining time is required. But, for the multi-patch sculptured surface, the amount of machining data becomes large. This means the increase of leading and machining time. In this study, the tool path generation method with reparameterization is proposed for multi-patch sculptured surface and variable step size using NURBS is used to satisfy the precision and to reduce leading and machining time.

  • PDF

Parallel Generation of NC Tool Paths for Subdivision Surfaces

  • Dai Junfu;Wang Huawei;Qin Kaihuai
    • International Journal of CAD/CAM
    • /
    • v.4 no.1
    • /
    • pp.47-53
    • /
    • 2004
  • The subdivision surface is the limit of recursively refined polyhedral mesh. It is quite intuitive that the multi-resolution feature can be utilized to simplify generation of NC (Numerical Control) tool paths for rough machining. In this paper, a new method of parallel NC tool path generation for subdivision surfaces is presented. The basic idea of the method includes two steps: first, extending G-Buffer to a strip buffer (called S-Buffer) by dividing the working area into strips to generate NC tool paths for objects of large size; second, generating NC tool paths by parallel implementation of S-Buffer based on MPI (Message Passing Interface). Moreover, the recursion depth of the surface can be estimated for a user-specified error tolerance, so we substitute the polyhedral mesh for the limit surface during rough machining. Furthermore, we exploit the locality of S-Buffer and develop a dynamic division and load-balanced strategy to effectively parallelize S-Buffer.

machining of sculptured surfaces using partition machining method (분할가공법에 의한 자유곡면가공)

  • Lee, Tae-Whi;Lee, Sang-Joe
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2114-2120
    • /
    • 1997
  • This paper presents precision machining of sculptured surfaces with a flat end cutter as follows; tool path generation using partition machining method and elimination interference. These days many researchers are getting interested in flat end cutter having a good cutting performance as machine tool for machining sculptured surfaces. It can get low curvature surfaces and have a much better material removal rates and longer tool life. Partition machining method is the first submitted in this paper. It is a new method of tool path generation, which means the way to map surfaces under the normal vector and then to cut them partially.

Offsetting a Region Including Islands for Tool-Path Generation (공구 경로 생성을 위한 아일랜드를 포함하는 영역의 오프셋)

  • Park, Sang-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2009-2018
    • /
    • 2001
  • This paper presents a region offsetting algorithm for tool-path generation. The proposed region offsetting algorithm is developed by expanding the 'PWID offset algorithm [Choi and Park, 1999]'designed to offset a simple polygon. The PWID offset algorithm has three important steps; 1) remove 'local invalid ranges'by invoking a PWID test, 2) construct a raw offset owe and 3) remove 'global invalid ranges'by finding self-intersections of the raw offset cure. To develop a region offsetting algorithm, we modified the PWID offset algorithm by expanding the concept of the 'global invalid range'in the third step. The time complexity of the proposed algorithm is approximately Ο(n), where n is the number of points, and it is free of numerical errors for practical purposes. The proposed algorithm has been implemented and tested with various real regions obtained by intersecting a sculptured surface with a plane.