• Title/Summary/Keyword: Tool-Normal Vector

Search Result 27, Processing Time 0.019 seconds

Frictional Contact Model for Finite Element Analysis of Sheet-Metal Forming Processes (박판 성형 공정의 유한요소 해석을 위한 마찰접촉 모델)

  • 금영탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2242-2251
    • /
    • 1993
  • The mesh-based frictional contact model has been developed which does not rely on the spatial derivatives of the tool surface. Only points on the surface are evaluated from the description. which can then be simplified because of the relaxed demands placed on it. The surface tangents, normals, and corresponding derivatives at each finite-element node are evaluated directly from the finite-element mesh, in terms of the connecting nodal positions. The advantages accrue because there is no longer a need for a smooth tool surface to assure reasonable normals and derivatives. Furthermore, it can be shown that the equilibrium equations can only be properly written with a special normal derived from the mesh itself. The validity, accuracy, computation time, and stability of mesh-based contact model were discussed with the numerical examples of rounded flat-top and rough, flat-top rounded punch forming operations. Also, the forming process of a automobile inner panel section was simulated for testing the robustness of new contact model. In the discussion, the superiority of new model was examined, comparing with tool-based contact one.

A Study on the Automatic Fairing and Modeling System of Hull From (선형의 자동순정 및 모델링 시스템에 관한 연구)

  • 김동준
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.121-127
    • /
    • 2000
  • In this paper a new technique of inverse fairing problem for ship hull is proposed. Recently Lu solved the inverse fairing problem for automobile's body that was made by one surface element. In this system however hull surface is constructed by Gregory's composite surface interpolation method. So reflection line at boundary position is used as a tool of solving inverse problem in surface fairing. But the results are not good. The new concepts of Normal vector line and Constrained reflection line are introduced as an alternative tool. Energy minimization method for Normal Vector Line curve net and the inverse method for Constrained Reflection Line by using optimization technique are examined And the final lines from this proposed surface fairing method shows good fairness.

  • PDF

Offset of STL Model Generated from Multiple Surfaces (열린 STL 모델의 옵셋 방법)

  • Kim Su-Jin;Yang Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.187-193
    • /
    • 2006
  • This paper introduces and illustrates the results of a new method for offsetting the triangular mesh generated from multiple surfaces. The meshes generated from each surface are separated each other and normal directions are different. The face normal vectors are flipped to upward and the lower faces covered by upper faces are deleted. The virtual normal vectors are introduced and used to of feet boundary. It was shown that new method is better than previous methods in offsetting the triangular meshes generated from multiple surfaces. The introduced offset method was applied for 3-axis tool path generation system and tested by NC machining.

Pose Estimation of a Cylindrical Object for an Inspection Robot (검사용 로봇을 위한 원기둥형 물체의 자세 추정 방법)

  • 정규원
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • The cylindrical object such as a water pipe or an oil pipeline are widely used in the infrastructure. Those pipes should be inspected periodically by human or a robot. However, since there is no edge or vertex in the pipe, it is very difficult for the robot to navigate along the pipe. In this paper in order to guide the robot along the axis of the pipe, an algorithm which find the axis using the measured range data from the robot to the pipe wall is developed The algorithm is verified using both the simulated range data and the measured one.

Posture Estimation Method for a Cylindrical Object (원기둥형 물체의 자세 인식 방법)

  • Jeong, Kyu-Won
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.234-239
    • /
    • 2003
  • A cylindrical shape object is widely used as a mechanical part and a water pipe or an oil pipeline which are of cylindrical shape are widely used in the infrastructure. In order to handling such objects automatically using a robot, the posture i.e. orientation in 3D space should be recognized. However, since there is no edge or vertex in the pipe, it is very difficult task for the robot. In this paper in order to guide the robot, two kind of algorithms which find the axis using the measured range data from the robot to the object surface are to be developed. The algorithms are verified using both the simulated range data and the measured one.

  • PDF

machining of sculptured surfaces using partition machining method (분할가공법에 의한 자유곡면가공)

  • Lee, Tae-Whi;Lee, Sang-Joe
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2114-2120
    • /
    • 1997
  • This paper presents precision machining of sculptured surfaces with a flat end cutter as follows; tool path generation using partition machining method and elimination interference. These days many researchers are getting interested in flat end cutter having a good cutting performance as machine tool for machining sculptured surfaces. It can get low curvature surfaces and have a much better material removal rates and longer tool life. Partition machining method is the first submitted in this paper. It is a new method of tool path generation, which means the way to map surfaces under the normal vector and then to cut them partially.

A Study on the Machining of Sculptured Surfaces by 5-Axis CNC Milling (ll) The Prediction of Cusp Heights and Determination of Tool Path interval (5-축 CNC 밀링으로의 자유곡면 가공에 관한 연구 (II) 커섭 높이 예측과 공구경로 결정)

  • 조현덕;전용태;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2012-2022
    • /
    • 1993
  • For the machining of the sculptured surfaces on 5-axis CNC milling machine, the milling cutter direction vector was determined in the study (I) with 5-axis post-processing. Thus, it was possible to cut the sculptured surfaces on five-axis CNC milling machine with the end mill cutter. Then, for smooth machined surfaces in five-axis machining of free-from surfaces, this study develops an algorithm for prediction of cusp heights. Also, it generates tool path such that the cusp heights are constrained to a constant value or under a certain value. For prediction of the cusp height between two basis points, a common plane, containing the line crossing two basis points and the summation vector of two normal vectors at two basis points, is defined. The cusp height is the maximum value of scallops on the common plane after end mill cutter passes through the common plane. Sculptured surfaces were machined with CINCINNATI MILACRON 5-axis machining center, model 20V-80, using end mill cutter. Cusp heights were verified by 3-dimensional measuring machine with laser scanner, WEGU Messtechnik GmbH.

Left Atrial Velocity Vector Imaging Can Assess Early Diastolic Dysfunction in Left Ventricular Hypertrophy and Hypertrophic Cardiomyopathy

  • Se-Jung Yoon;Sungha Park;Eui-Young Choi;Hye-Sun Seo;Chi Young Shim;Chul Min Ahn;Sung-Ai Kim;Jong-Won Ha
    • Journal of Cardiovascular Imaging
    • /
    • v.31 no.1
    • /
    • pp.41-48
    • /
    • 2023
  • BACKGROUND: The function of left atrium (LA) is difficult to assess because of its ventricle-dependent, dynamic movement. The aim of this study was to assess LA function using velocity vector imaging (VVI) and compare LA function in patients with hypertrophic cardiomyopathy (HCMP) and left ventricular hypertrophy (LVH) with normal controls. METHODS: Fourteen patients with HCMP (72% male, mean age of 52.6 ± 9.8), 15 hypertensive patients with LVH (88% male, mean age of 54.0 ± 15.3), and 10 age-matched controls (83% male, mean age of 50.0 ± 4.6) were prospectively studied. Echocardiographic images of the LA were analyzed with VVI, and strain rate (SR) was compared among the 3 groups. RESULTS: The e' velocity (7.7 ± 1.1; 5.1 ± 0.8; 4.5 ± 1.3 cm/sec, p = 0.013), E/e' (6.8 ± 1.6; 12.4 ± 3.3; 14.7 ± 4.2, p = 0.035), and late diastolic SR at mid LA (-1.65 ± 0.51; -0.97 ± 0.55; -0.82 ± 0.32, p = 0.002) were significantly different among the groups (normal; LVH; HCMP, respectively). The e' velocity, E/e', and late diastolic SR at mid LA were significantly different between normal and LVH (p = 0.001; 0.022; 0.018), whereas LA size was similar between normal and LVH (p = 0.592). The mean late diastolic peak SR of mid LA was significantly correlated with indices of diastolic function (E/e', e', and LA size). CONCLUSIONS: The SR is a useful tool for detailed evaluation of LA function, especially early dysfunction of LA in groups with normal LA size.

A Voxelization for Geometrically Defined Objects Using Cutting Surfaces of Cubes (큐브의 단면을 이용한 기하학적인 물체의 복셀화)

  • Gwun, Ou-Bong
    • The KIPS Transactions:PartA
    • /
    • v.10A no.2
    • /
    • pp.157-164
    • /
    • 2003
  • Volume graphics have received a lot of attention as a medical image analysis tool nowadays. In the visualization based on volume graphics, there is a process called voxelization which transforms the geometrically defined objects into the volumetric objects. It enables us to volume render the geometrically defined data with sampling data. This paper suggests a voxeliration method using the cutting surfaces of cubes, implements the method on a PC, and evaluates it with simple geometric modeling data to explore propriety of the method. This method features the ability of calculating the exact normal vector from a voxel, having no hole among voxels, having multi-resolution representation.

A Study on the Pseudoinverse Kinematic Motion Control of 6-Axis Arc Welding Robot (6축 아크 용접 로보트의 의사 역기구학적 동작 제어에 관한 연구)

  • Choi, Jin-Seob;Kim, Dong-Won;Yang, Sung-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.170-177
    • /
    • 1993
  • In robotic arc welding, the roll (rotation) of the torch about its direction vector does not have any effect on the welding operation. Thus we could use this redundant degree of greedom for the motion control of the robot manipulator. This paper presents an algorithm for the pseudo- inverse kinematic motion control of the 6-axis robot, which utilizes the above mentioned redunancy. The prototype welding operation and the tool path are also graphically simulated. Since the proposed algorithm requires only the position and normal vector of the weldine as an input data, it is useful for the CAD-based off-line programming of the arc welding robot. In addition, it also has the advantages of the redundant manipulator motion control, like singularity avoidance and collision free motion planning, when compared with the other motion control method based on the direct inverse kinematics.

  • PDF