• Title/Summary/Keyword: Tool vibration

Search Result 877, Processing Time 0.027 seconds

3차원 절삭가공에서의 2자유도 채터안정성 해석

  • 김병룡;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.31-35
    • /
    • 2001
  • Three dimensional dynamic cutting can be postulated as an equivalent orthogonal dynamic cutting through the plane containing both the cutting vector and the chip flow velocity vector in cutting process. An analytical expression of dynamic cutting force is obtained from the cutting parameters determined by the static three dimensional cutting experiments. Particular attention is paid to the energy supplied to the vibration of the tool behind the vertical vibration and the direction. The phase lag of the horizontal vibration of the tool behind the vertical vibration and the direction angel of the fluctuating cutting force must be regarded in point of stability limits. Chatter vibration can effectively be suppressed by enlarging the dynamic rigidity of the cutting system in the vertical cutting force direction. A good agreement is found between the stability limits predicted by theory and the critical width of cut determined by experiments.

Monitoring of Chatter Vibration using Neural Network in Turning Operation (선삭가공 중 신경망을 이용한 채터진동의 감시)

  • Nam, Yong-Seak;Cho, Jong-Rae;Kim, Chae-Sil;Jung, Youn-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.72-77
    • /
    • 2001
  • Monitoring of the chatter vibration is necessarily required to do automatic manufacturing system. Therefore, we constructed a sensing system using tool dynamometer in order to monitor of chatter vibration on cutting process. Furthemore, an application of neural network using behavior of principal cutting force signals Is attempted. With the error back propagation trining process, the neural network memorized and classified the feature of principal cutting force signals. From obtained result, it is shown that the chatter vibration can be monitored effectively by neural network.

  • PDF

3 Dimensional Vibration Measurement of Structures Using GPS Carrier Phase (GPS 반송파를 이용한 구조물의 3차원 진동측정)

  • Suh, Dae-Wan;Lee, Young-Jae;Park, Hoon-Cheol;Yoon, Kwang-Joon;Jee, Gyu-In;Park, Chan-Gook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1303-1310
    • /
    • 2000
  • GPS carrier phase is supposed to provide the tool for the most precise 3 dimensional positioning information. The FAST, an OTF technique, has been developed by the GPS System Laboratory of Konkuk University, and has been shown several millimeter level accuracy in root-mean-square sense. This OTF's high precision positioning capability provides an adequate tool of low frequency vibration monitoring of large structures. In this paper, the possibility of vibration measurement of a cantilever beam using FAST has been tested, which is supposed to be extended to more practical applications. The results of the experiment have been compared with those by a strain gage and laser sensor.

  • PDF

Design and Manufacture of Ultrasonic Vibration Drawing Tool (유한요소해석을 이용한 초음파 진동 인발기 설계 및 제작)

  • Lee, K.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.363-371
    • /
    • 2010
  • In ultrasonic vibration drawing, the drawing forces can be reduced by applying ultrasonically oscillating dies. Ultrasonic vibration drawing has been considered as a means of accommodating high-level drawing processes such as shaped wire, ultrafine wire, and the wire drawing operation in semidry or dry condition. Prior studies were attempted to analyze the mechanism of improved drawing performances, such as reduced drawing force and improved lubrication characteristic. However, researches on design rule for ultrasonic vibration drawing system are not yet carried out. The principal objectives of this work are to design a set of tooling capable to superimpose the oscillations and to observe by experiments the influence of the ultrasonic oscillations on the wire drawing.

An analysis of cutting process with ultrasonic vibration by ARMA model (자동회귀-이동평균(ARMA) 모델에 의한 초음파 진동 절삭 공정의 해석)

  • I.H. Choe;Kim, J.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.85-94
    • /
    • 1994
  • The cutting mechanism of ultrasonic vibration machining is characterized as two phases, that is, an impact at the cutting edge and a reduction of cutting force due to non-contact interval between tool and workpiece. In this paper, in order to identify cutting dynamics of a system with ultrasonically vibrated cutting tool, an ARMA modeling is performed on experimental cutting force signals which have a dominant effect on cutting dynamics. The aim of this study is, through Dynamic Date System methodology, to find the inherent characteristics of an ultrasonic vibration cutting process by considering natural frequency and damping coefficient. Surface roughness and stability of cutting process under ultrasonic vibration are also considered

  • PDF

A study on the chatter vibration of two degree of freedom systems (2자유도 채터진동의 특성에 관한 연구)

  • Kim, Jeong-Suk;Kang, Myeong-Chang;Kim, Byeong-Ryoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.216-226
    • /
    • 1993
  • Three dimensional cutting is considered as an equivalent orthogonal cutting through the plane containing both the cutting velocity vector and the chip flow velocity vector in dynamic cutting process. An analytical expression of dynamic cutting force is obtained from the cutting parameters determined by the static cutting. Particular attention is paid to the energy supplied to the vibratory system of cutting tool with two degree of freedom. In this approach, the phase lag of the horizontal vibration of the tool behind the vertical vibration and the direction angle of the fluctuating cutting force is considered in point of stability limits. Chatter vibration can be effectively suppressed by relatively increasing the spring constant and the damping coefficient of the cutting system in the vertical cutting force direction. A good agreement is found between the stability limits predicted by theoretical value and experimental results.

  • PDF

A Study on Ultrasonic Vibration Cutting of Carbon Fiber Reinforced Plastics (탄소섬유강화 플라스틱의 초음파 진동절삭에 관한 연구)

  • 김정두;이은상;최인휴
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.24-33
    • /
    • 1994
  • The main applications of CFRP are sports, aerospace and general industrial uses including automobiles. As this application fields expands the opportunity of machining, but CFRP is difficult to cut because of delamination of the composites and the short tool life. In this paper, the machinability of multidirectional CFRP by means of ultrasonic vibration cutting, which has been verified experimentally investigated.The experimentally to be highly effective in view of cutting force and surface quality.

Virtual Dynamic Machining System for Chatter Detection and Avoidance (채터진동 검출 및 회피를 위한 가상 동적 가공시스템 구축)

  • Kim, H.;Jo, M.H.;Koo, J.Y.;Lee, J.H.;Kim, J.S.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.273-278
    • /
    • 2014
  • This study presents a chatter vibration avoidance program for the milling process. Chatter vibration has a negative effect on workpieces and spindle-tools. When chatter vibration occurs, the cutting tool is loaded dynamically, a chatter pattern is generated on the workpiece, and the tool life is reduced. The developed program is composed of various modules such as an FFT analyzer, an impact test analyzer, a chatter vibration indicator, and a spindle speed recommender. The proposed program is verified using an AISI D2 cutting experiment in milling process. The effect of chatter vibration on the machining condition can be simulated by the suggested method, and successfully exploited to avoid chatter vibration.

Development of an Expert System for Optimizing Die and Mold Polishing-I (금형면 자동 다듬질 전문가 시스템 개발에 관한 연구-I -DB 구축을 위한 회전 및 진동 연마 가공의 실험적 연구-)

  • 민헌식;이성환;안유민;조남규;한창수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.38-44
    • /
    • 2002
  • In manufacturing die and mold, polishing: is important as it takes as much as 50% of the production cost. In this research, an attachable type polishing device to a WC machining center was developed. experiments were done with a special1y designed rotation type polishing device. Also an ultra-sonic (vibration type) waving device was introduced to acquire finer surface finishes. From the constructed data base based on the experimental results, it is shown that optimal polishing conditions are generated by the combined use of the rotation type tool and the vibration type tool.

A Seismic Analysis of Spent Fuel Handling Tool (사용후 핵연료 취급장비의 내진해석)

  • 김성종;이영신;김재훈;김남균
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1210-1215
    • /
    • 2002
  • The spent fuel handling tool is used to handle the refuel bundle and treated by hoist rope on the bridge crane. The new developed handling tool of NPP(Nuclear Power Plant) should be conformed the structural stability under earthquake condition. In this study, the stress and seismic analysis of the handling tool are performed by finite element method. Using the Floor Response Spectrum(FRS) obtained through the time history analysis, the modal and seismic analysis under Operating Basis Earthquake(OBE) and Safe Shutdown Earthquake(SSE) load conditions are carried out. Total 4 cases of different locations of the trolly and the hook are investigated. With the spring-damper element, the tension analysis of hoist rope is conducted. The stability of handling tool under earthquake load condition is conformed with regulatory guide.

  • PDF