• 제목/요약/키워드: Tool rotation speed

검색결과 122건 처리시간 0.029초

Al 7075-T651의 마찰교반 용접에 대한 회전속도와 이송속도의 영향 (Effects of Tool Rotation and Transition Speed during Friction Stir Welding of Al 7075-T651 Alloy)

  • 한민수;전정일;장석기
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.532-539
    • /
    • 2007
  • The 7075-T651 Al alloy was welded by friction stir welding. Microstructure, macro behaviors and fracture type in the nugget, thermo-mechanically affected zone(TMAZ) and heat affected zone(HAZ) of the welded part were compared to base metal. The microsturctures of nugget zone were compared with tool rotation speeds and various tool transition speed. When the rotation speeds were decreased and transition speeds were increased, the hardness of nugget zone were decreased. Also, the optimal microstructure was observed at the low rotation speed of 800rpm and the high transition speed of 124mm/min. The transgranular dimple and quasi-cleavage at fractured part of nugget zone were investigated.

마찰교반접합의 공정변수가 AA2219-AA2195 이종 알루미늄 접합에 미치는 영향 (Effect of Process Parameters on Friction Stir Welds on AA2219-AA2195 Dissimilar Aluminum Alloys)

  • 노국일;유준태;윤종훈;이호성
    • 한국재료학회지
    • /
    • 제27권6호
    • /
    • pp.331-338
    • /
    • 2017
  • This study was carried out to investigate the optimum condition of a friction stir welding process for a joint of AA2219-T87 and AA2195-T8 dissimilar aluminum alloys. These alloys are known to have good cryogenic properties, and as such to be suitable for use in fuel tanks of space vehicles. The welding parameters include the travelling speed, rotation speed and rotation direction of the tool. The experiment was conducted under conditions in which the travelling speed of the tool was 120-300 mm/min and the rotation speed of the tool was 400-800 rpm. To investigate the effect of the rotation direction of the tool, the joining was performed by switching the positions of the two dissimilar alloys. After welding, the microstructure was observed and the micro-hardness were measured; non-destructive evaluation was carried out to perform tensile tests on defect-free specimens. The result was that the microstructure of the weld joint underwent dynamic recrystallization due to sufficient deformation and frictional heat. The travelling speed of the tool had little effect on the properties of the joint, but the properties of the joint varied with the rotation speed of the tool. The conditions for the best joining properties were 600 rpm and 180-240 mm/min when the AA2219-T8 alloy was on the retreating side(RS).

알루미늄합금 6061-T6의 마찰교반용접 조건에 따른 기계적특성 및 용접부 조직평가 (Mechanical Characteristics and Microstructure on Friction Stir Welded Joints with 6061-T6 Aluminium Alloy)

  • 장석기;박종식
    • 대한기계학회논문집A
    • /
    • 제33권7호
    • /
    • pp.693-699
    • /
    • 2009
  • This paper shows mechanical properties and behaviors of macro- and micro-structures on friction stir welded specimen with 6061-T6 aluminum alloy plate. It apparently results in defect-free weld zone jointed at welding conditions like the traverse speed of 267mm/min, tool rotation speed of 2500rpm, pin inserted depth of 4.5mm and tilting angle of $2^{\circ}$ with tool dimensions such as tool pin diameter of 5mm, shoulder diameter of 15mm and pin length of 4.5mm. The tensile stress ${\sigma}_T=228MPa$ and the yield point ${\sigma}Y=141MPa$ are obtained at the condition of traverse speed of 267mm/min and tool rotation speed of 2500rpm. With the constant rotation speed, the higher traverse speed become, the higher tensile stress and yielding point become. Vickers hardness for welding zone profile were also presented.

Al 7075의 마찰교반 용접부 미세조직에 관한 연구 (Microstructures in friction-stir welded Al 7075-T651 alloy)

  • 장석기;이돈출;김성종;전정일
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.331-338
    • /
    • 2005
  • The grain structure, dislocation density and second phase particles in various regions including the stir zone(SZ), thermo-mechanically affected zone(TMAZ), and heat affected zone(HAZ) of a friction stir weld 6.35mm thick aluminum 7075-T651 alloy were investigated and compared with the base metal. The microstruectures of nugget zone were compared according to tool rotation speeds and tool transition speeds. The hardness profiles of nugget zone were increased, while decreasing rotation speed and increasing welding speed. The optimal microstructure was gained at the low rotation speed 800rpm and th high welding speed 124mm/min. The nugget microstructures of fracture surface, transgranular dimple and quasicleavage type were showed different fracture type with the HAZ, shear fracture type.

  • PDF

마찰교반 용접변수에 따른 알루미늄 압출판재의 인장특성 평가 (Evaluation on Tensile Characteristics of Extruded Aluminum Panel Joints by Friction Stir Welding Parameters)

  • 임병철;김영문;김원섭;박상흡
    • 한국산학기술학회논문지
    • /
    • 제19권3호
    • /
    • pp.614-618
    • /
    • 2018
  • Al 6061-T6를 사용하여 마찰교반 용접 시 회전 툴 숄더의 너비부의 넓이와 회전 속도, 이동속도의 변화에 따른 물성의 변화에 대하여 평가되었다. FSW 공정의 접합 변수에 따라 인장시험을 수행하기 위하여 KS B 0801 5호에 따라 시험편을 제작하여 마찰교반 용접을 시행하였다. 마찰교반 용접이 된 시험편의 기계적 특성을 평가하기 위해 Instron 인장시험기를 사용하여 1mm/min의 시험 속도로 인장시험을 시행했다. 평가결과, 인장강도는 회전 속도가 증가함에 증가 하였다. 툴 숄더의 이동 속도가 빠를수록 툴 유형에 관계없이 인장강도는 감소하였다. 툴 숄더 직경 12 mm (TSD12) 의 인장 강도 값은 일반적으로 8mm 보다 높게 나타났다. 이동 속도와 회전하는 속도가 한계 값을 초과하면 재료의 특성에 영향을 주지 않고 안정화 단계에 도달한다. 툴 숄더 직경 8mm (TSD8) 는 TSD12 유형의 공구와 비교하여 재료 특성이 감소하고 용접 영역에서 재료가 완전히 혼합되지 않는다. 인장 강도 값은 모든 회전 속도 1500 rpm에서 상대적으로 감소한다. 이동 속도가 낮을수록 같은 회전수에서 재료의 혼합될 수 있는 양이 많으므로 인장강도값이 높게 나타난다. 결과적으로 용접 영역에서 재료를 완전히 혼합하고 전이 온도에 도달하기 위해서는 임계값을 초과하는 회전 속도가 필요하다.

Al 7075의 마찰교반 용접부 특성에 관한 연구 (Weldability of Al 7075 Alloy according to different tools and welding conditions by F.S.W)

  • 장석기;전정일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.30-41
    • /
    • 2006
  • This paper shows mechanical Properties and behaviors of macrostructures for specimens welded by F.S.W according to welding conditions and tool dimensions with $6.35mm_t$ aluminum 7075-T651 alloy plate. It apparently results in defect-free weld zone in case transition speed was changed to 15mm/min 61mm/min and 124mm/min under conditions of tool rotation speed such as 800rpm. 1250rpm and 1600rpm respectively with tool's Pin diameter 40mm and 60mm. The optimum mechanical property, ultimate stress,${\sigma}_Y=470Mpa$ is obtained at the condition of 124mm/min of travel speed with 800rpm of tool rotation speed using full screw type pin. shoulder dia. $20{\phi}mm$ pin dia. $6{\phi}mm$ and pin length 6mm. The full-screw type and the half-screw type pin shows the similar behaviors of weldability. It is found that the size of nugget is depended on tool transition speed and tool dimension by macrostructures of the cross section of weld zone.

Al 7075의 마찰교반 용접부 특성에 관한 연구 (Weldability of Al 7075 Alloy according to different tools and welding conditions by F.S.W)

  • 장석기;전정일
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.348-358
    • /
    • 2005
  • This paper showed mechanical properties and behaviors of macrostructures for specimens welded by F.S.W according to welding conditions and tool with 6.35$mm_t$ aluminum 7075-T651alloy plate. It resulted in defect-free weld zone in case tool rotation speed was 800rpm, 1250rpm and 1600rpm respectively that transition speed was changed to 15mm/min, 61mm/min and 124mm/min with tool's pin diameter 4${\Phi}$mm and 6${\Phi}$mm. The optimum mechanical property, ultimate stress,${\sigma}_Y$=470Mpa was obtained at the condition of 124mm/min of travel speed with 800rpm of tool rotation speed using full screw type pin, shoulder dia. 20${\Phi}$mm, pin dia.6${\Phi}$mm and pin length 6mm. The full-screw type and the half-screw type pin showed the similar behaviors of weldability. It is found that the size of nugget was depended on tool transition speed and tool dimension by macrostructures of the cross section of weld zone.

  • PDF

5052 알루미늄 합금 마찰교반접합부 특성에 미치는 접합인자의 영향 (Effect of Welding Parameters on the Friction Stir Weldability of 5052 Al alloy)

  • 이원배;김상원;이창용;연윤모;장웅성;서창제;정승부
    • Journal of Welding and Joining
    • /
    • 제22권3호
    • /
    • pp.69-76
    • /
    • 2004
  • Effects of friction stir welding parameters such as tool rotation speed and welding speed on the joints properties of 5052 Al alloys were studied in this study. A wide range of friction stir welding conditions could be applied to join 5052 AA alloy without defects in the weld zone except for certain welding conditions with a lower heat input. Microstructures near the weld zone showed general weld structures such as stir zone (SZ), thermo-mechanically affected zone (TMAZ) and heat affected zone (HAZ). Each zone showed the dynamically recrystallized grain, transient grain and structure similar to base metal's, respectively. Hardness distribution near the weld zone represented a similar value of the base metal under wide welding conditions. However, in case of 800 rpm of tool rotation speed, hardness of the stir zone had a higher value due to the fine grain with lots of dislocation tangle, a higher angle grain boundary and some of Al3Fe particles. Except joints with weld defects, tensile strength and elongation of the joints had values similar to the base metal values and fracture always occurred in the regions approximately 5mm away from the weld center.

AZ31와 AZ61 마그네슘 합금의 이종 마찰교반용접 특성 (Dissimilar Friction Stir Welding Characteristics of Mg Alloys(AZ31 and AZ61))

  • 박경도;이해진;이대열;강대민
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.99-104
    • /
    • 2017
  • Friction stir welding is a solid-state joining process and is useful for joining dissimilar metal sheets. In this study, the experimental conditions of the friction stir welding were determined by the two-way factorial design to evaluate the characteristics of the dissimilar friction stir welding of AZ31 and AZ61 magnesium alloys. The levels of rotation speed and welding speed, which are welding variables, were 1000, 2000, 3000 rpm and 100, 200, 300 mm/min, respectively. From the results, the greater the rotation speed and the lower the welding speed of the tool were, the greater the tensile strength of the welded part was. The contribution of the welding speed of the tool is larger than that of the rotation speed of the tool. In addition, the optimal conditions for tensile strength in the dissimilar friction stir joint were predicted to be the rotation speed of 3000 rpm and welding speed of 100 mm/min, and the tensile strength under the optimal conditions was estimated to be $214{\pm}6.57Mpa$ with 99% reliability.

Optimization of FSW of Nano-silica-reinforced ABS T-Joint using a Box-Behnken Design (BBD)

  • Mahyar Motamedi Kouchaksarai ;Yasser Rostamiyan
    • Advances in nano research
    • /
    • 제14권2호
    • /
    • pp.117-126
    • /
    • 2023
  • This experimental study investigated friction stir welding (FSW) of the acrylonitrile-butadiene-styrene (ABS) T-joint in the presence of various nano-silica levels. This study aim to handle the drawbacks of the friction stir welding (FSW) of an ABS T-joint with various quantity of nanoparticles and assess the performance of nanoparticles in the welded joint. Moreover, the relationship between the nanoparticle quantity and FSW was analyzed using response surface methodology (RSM) Box-Behnken design. The input parameters were the tool rotation speed (400, 600, 800 rpm), the transverse speed (20, 30, 40 mm/min), and the nano-silica level (0.8, 1.6, 2.4 g). The tensile strength of the prepared specimens was determined by the universal testing machine. Silica nanoparticles were used to improve the mechanical properties (the tensile strength) of ABS and investigate the effect of various FSW parameters on the ABS T-joint. The results of Box-Behnken RSM revealed that sound joints with desired characteristics and efficiency are fabricated at tool rotation speed 755 rpm, transverse speed 20 mm/min, and nano-silica level 2.4 g. The scanning electron microscope (SEM) images revealed the crucial role of silica nanoparticles in reinforcing the ABS T-joint. The SEM images also indicated a decrease in the nanoparticle size by the tool rotation, leading to the filling and improvement of seams formed during FSW of the ABS T-joint.