• Title/Summary/Keyword: Tool life prediction

Search Result 112, Processing Time 0.021 seconds

Development of a Tool Life Prediction Program for Increasing Reliability of Cutting Tools (공구의 신뢰성 향상을 위한 수명 예측 프로그램 개발)

  • Kim Bong-Suk;Kang Tae-Han;Kang Jae-Hun;Song Jun-Yeob;Lee Soo-Hun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.1-7
    • /
    • 2005
  • The prediction for tool life is one of the most important factors for increasing reliability, stability, and productivity of manufacturing system. This paper deals with a tool life prediction method in view of reliability assessment for cutting tools. In this study, flank wear was focused among multi-factors deciding the tool wear state. First, tool life was predicted by correlation between flank wear and cutting time, based on the extended Taylor tool life equation of turning, including parameters of cutting speed, feed rate, and cutting depth. Second, each of cutting conditions of end-milling was equivalently converted to apply ball end-mill data to the extended Taylor equation. The web-based prediction program for tool life was developed as one of reliability assessment programs for machine tools.

Evaluation of die life during hot forging process (열간 단조 공정의 금형 수명 평가)

  • 이현철;박태준;고대철;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1051-1055
    • /
    • 1997
  • Hot forging is widely used in the manufacturing of automotive component. The mechanical, thermal load and thermal softening which is happened by the high temperature die in hot forging. Tool life of hot forging decreases considerably due to the softening of the surface layer of a tool caused by a high thermal load and long contact time between the tool and workpieces. The service life of tools in hot forging process is to a large extent limited by wear, heat crack, plastic deformation. These are one of the main factors affecting die accuracy and tool life. It is desired to predict tool life by developing life prediction method by FE-simulation. Lots of researches have been done into the life prediction of cold forming die, and the results of those researches were trustworthy, but there have been little applications of hot forming die. That is because hot forming process has many factors influencing tool life, and there was not accurate in-process data. In this research, life prediction of hot forming die by wear analysis and plastic deformation has been carried out. To predict tool life, by experiment of tempering of die, tempering curve was obtained and hardness express a function of main tempering curve.

  • PDF

Development of Reliability Prediction Program for Tool Life (공구 수명의 신뢰성 예측 프로그램 개발)

  • 이수훈;김봉석;강태한;송준엽;강재훈;서천석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.317-322
    • /
    • 2004
  • This paper deals with a prediction method of tool life in view of the reliability assessment. In this study, the flank wear was studied among multi-factors deciding the tool wear state. Firstly, tool lift was predicted by correlation between flank wear and cutting time, based on the extended Taylor tool life equation of turning data, including parameters of cutting speed, feed rate, and cutting depth. Secondly, each of cutting conditions of endmilling was equivalently converted to apply ball endmill data to the extended Taylor equation. The web-based reliability prediction program for tool lift is being developed as one of reliability assessment programs to for the machine tools.

  • PDF

Development of tool-life prediction program to determine the optimal machining conditions in mold machining (금형 가공 시 최적 가공조건을 결정하기 위한 공구수명 예측 프로그램 개발)

  • Soon-Ok Park;Min-Hak Kim;Sun-Kyung Lee;Sung-Taek Jung
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2023
  • Recently, with the emergence of the 4th industrial revolution, the demand for smart factories and factory automation is increasing. In this study, a tool life prediction program was developed to select optimal machining conditions using CNC milling equipment, which is widely used in flexible production and automation. The equipment used in the experiment was Hwacheon Machine Tool's 5-axis machining equipment, and the tool used was a 17F2R tool. For the machining path, the down-milling cutting method was selected and long-term machining was performed. The analysis standard for side wear on the tool was set at 0.1 to 0.2 mm, and tool life data and wear data were obtained in the cutting experiment. The program was created through the data obtained from the experiment, and a prediction rate of over 90% was secured when comparing the experimental data and the predicted data.

  • PDF

Optimization of the Tool Life Prediction Using Genetic Algorithm (유전 알고리즘을 이용한 공구 수명 예측 최적화)

  • Kong, Jung-Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.338-343
    • /
    • 2018
  • Recently, a computer numerical control (CNC) machine is used widely for mold making in various industries. In the operation of a CNC machine, the production quality and safety of workers are becoming increasingly important as the product process increases. A variety of tool life prediction studies has been conducted to standardize the quality of production and improve reproducibility. When the tool life is predicted using the conventional tool life equation, there is a large error between the experimental result and result by the conventional tool life equation. In this paper, an algorithm that can predict the precise tool life was implemented using a genetic algorithm.

Prediction of the remaining service life of existing concrete bridges in infrastructural networks based on carbonation and chloride ingress

  • Zambon, Ivan;Vidovic, Anja;Strauss, Alfred;Matos, Jose;Friedl, Norbert
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.305-320
    • /
    • 2018
  • The second half of the 20th century was marked with a significant raise in amount of railway bridges in Austria made of reinforced concrete. Today, many of these bridges are slowly approaching the end of their envisaged service life. Current methodology of assessment and evaluation of structural condition is based on visual inspections, which, due to its subjectivity, can lead to delayed interventions, irreparable damages and additional costs. Thus, to support engineers in the process of structural evaluation and prediction of the remaining service life, the Austrian Federal Railways (${\ddot{O}}$ BB) commissioned the formation of a concept for an anticipatory life cycle management of engineering structures. The part concerning concrete bridges consisted of forming a bridge management system (BMS) in a form of a web-based analysis tool, known as the LeCIE_tool. Contrary to most BMSs, where prediction of a condition is based on Markovian models, in the LeCIE_tool, the time-dependent deterioration mechanisms of chloride- and carbonation-induced corrosion are used as the most common deterioration processes in transportation infrastructure. Hence, the main aim of this article is to describe the background of the introduced tool, with a discussion on exposure classes and crucial parameters of chloride ingress and carbonation models. Moreover, the article presents a verification of the generated analysis tool through service life prediction on a dozen of bridges of the Austrian railway network, as well as a case study with a more detailed description and implementation of the concept applied.

Tool life Evaluation of Hot Forging about Plastic Deformation and Wear (소성변형 및 마멸을 고려한 열간 단조 금형의 수명 평가)

  • 이현철;김동환;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.163-168
    • /
    • 2002
  • Hot forging is widely used in the manufacturing of industry machine component. The mechanical, thermal load and thermal softening which are happened by the high temperature in hot forging process. Tool life decreases considerably due to the softening of the surface layer of a tool caused by a high thermal load and long contact time between the tool and billet. Also, tool life is to a large extent limited by wear, heat crack and plastic deformation in hot forging process. These are one of the main factors affecting die accuracy and tool life. That is because hot forging process has many factors influencing tool life, and there was not accurate in-process data. In this research, life prediction of hot forging tool by wear and plastic deformation analysis considering tempering parameter has been carried out for automobile component. The new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

  • PDF

Prediction of Tool Life on Cooling System in Warm Forging (온간 단조에서의 냉각방법에 따른 금형 수명 예측)

  • 이현석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.67-70
    • /
    • 2000
  • The tool life is not long enough under sever forming condition in warm forging. The tool life is affected by wear heat fatigue plastic deformation and so on. Especially wear is one of the most serious factors for tool life. To increase tool life we should consider various factors like processing design die design die materials lubrication and cooling system This study design to obtain the steady state temperature of die by FEM analysis under several conditions of cooling. There are four cooling conditions in this study no cooling internal cooling external cooling and both internal and external cooling. With above obtained temperatures tool life is predicted using Archard's model that is considered softening of die. The effect of internal cooling system is better than that of externally cooled die. To predict the die life the steady state temperature is calculated by using mean temperature of die. Considering only wear the die life much longer as the cooling effect is bigger. The more accurate die life will be predicted if we consider heat crack as well as wear.

  • PDF

Structural Reliability Evaluation on Solder Joint of BGA and TSSOP Components under Random Vibration using Reliability and Life Prediction Tool of Sherlock (신뢰성 수명예측 도구 Sherlock을 활용한 랜덤진동에서의 BGA 및 TSSOP 솔더 접합부의 구조 신뢰성 평가)

  • Park, Tae-Yong;Park, Jong-Chan;Park, Hoon;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1048-1058
    • /
    • 2017
  • One of the failure mechanism of spaceborne electronics is a fatigue fracture on solder joint under launch random vibration. Thus, a necessity of early diagnosis through the fatigue life evaluation on solder joint arises to prevent such potential risk of failure. The conventional life prediction methods cannot assure the accuracy of life estimation results if the packaging type changes, and also requires much time and effort to construct the analysis model of highly integrated PCB with various packaging types. In this study, we performed life prediction of PCB based on a reliability and life prediction tool of sherlock as a new approach for evaluating the structural reliability on solder joint, and those prediction results were validated by fatigue tests. In addition, we also investigated an influence of solder height on the fatigue life of solder joint. These results indicated that the Sherlock is applicable tool for evaluating the structural reliability of spaceborne electronic.

Prediction of life of SAPH45 steel with measured fracture time and strength (인장파단시간 및 응력측정에 의한 SAPH45의 수명예측)

  • 박종민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.269-273
    • /
    • 1998
  • The failure of material structures or mechanical system is considered as a direct or indirect result of fatigue. In the design of mechanical structure for estimating of reliability, the prediction of failure life is the most important failure mode to be considered. However, because of a complicated behavior of fatigue in mechanical structure, the analysis of fatigue is in need of much researches on life prediction. This document presents a prediction of fatigue life of the SAPH45 steel, which is extensively for vehicle frame. The method using lethargy coefficient and stress distribution factor at pediction of fatigue life based on the consideration of the failure characteristics from the tensile test should be provided in this study.

  • PDF