• Title/Summary/Keyword: Tool life

Search Result 2,291, Processing Time 0.031 seconds

A Study on Machinability of Calcium-Deoxidized Steel (1st Report) (Ca탈산강의 피삭성에 관한 연구(제1보))

  • Lee, Yong-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.1 no.2
    • /
    • pp.41-46
    • /
    • 1984
  • The machinability of calicium-deoxidized steel is studied in turning by being compared with that of Fe-Si deoxidized steel under a given set of cutting condition. Tool life, cutting force and cutting mechanism are examined on a few sorts of steel. It is found that adhesive layer "Belag" is developed on the cemented carbide tool and the peak value is observed at the cutting speed of 300m/min followed by gradual increase in the thickness of Belag with the increase of cutting speed. the maximum thickness of Belag is also shown at the feed of 0.3mm/rev. On the other hand, the tool life of carbide tool is more favorable than that of high speed steel (SKH 9) in cutting calcium- deoxidized steel. It is considered that the steel deoxidized with Ca-Si shows better machinability a little than that with Fe-Si. However, the cutting force and the shear angle of the former are similar to those of the latter in turning.n turning.

  • PDF

Optimization of high-speed machining process using constrained R-T characteristic curve (절삭률-공구수명 특성 곡선을 이용한 고속가공 공정의 최적화에 관한 연구)

  • 최용철;김동우;장윤상;조명우;허영무
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.100-105
    • /
    • 2003
  • With the recent development of machining technology, high speed machining process is widely used for-the mold and difficult-to -cut-materials machining since it allows achieving high productivity and surface quality. However, during the high speed machining process, high cutting speed and feed rate can cause abrupt tool life decrease due to rapid rising of the cutting tool temperature. Such situation may cause increase of machining cost. Thus, in this study, developed optimization algorithm is applied to determine optimal machining variables for multiple high speed machining. The R-T characteristic curve for machining economics problems with a linear-lorarithmic tool life model is determined by applying sensitivity analysis. finally, a series of high speed machining experiments are performed to determine the desired optimal machining variables, and the results are analyzed.

  • PDF

Cutting Characteristics of Actuator Arm in Hard Disk Drive (하드디스크 드라이브용 액츄에이터 암의 절삭 가공 특성)

  • Lee Jae-Woo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.11-12
    • /
    • 2006
  • Actuator arm of HDD were machined with the slitting saw of tungsten carbide to clarify the cutting characteristics in terms of the roughness of machined surface, the burr size and the tool wear. An improved performance in all view of the surface machined, the tool life and the cutting efficiency was obtained at the cutting speed of 4,000rpm with the feed of 300m/min. The tool life increases with increasing the t/T value, whereas surface roughness decreases. The tool with alternate type of B and C edges has an effect to decrease the burr size.

  • PDF

Cutting characteristics of in situ toughened $SiC-Si_3N_4$ composite (현장인화 $SiC-Si_3N_4$ 복합재료의 절삭성능 평가)

  • 김경재;박준석;권원태;김영욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.386-391
    • /
    • 2000
  • It is known that Si$_3$N$_4$ceramic insert has less hardness than A1$_2$O$_3$ceramic insert. But Si$_3$N$_4$ceramic insert has not only high toughness and strength but also low thermal expansion coefficient, which makes it has longer tool life under thermal stress condition. In this study, commercial Si$_3$N$_4$ ceramic insert and home-made SiC-Si$_3$N$_4$ceramic insert which has different sintering time and chemical composition is tested under various cutting conditions. The experimental result is compared in terms of tool life and cutting force. Generally, As the cutting speed and the feed rate increased, the cutting force and the flank wear increased too. The performance of SiC-Si$_3$N$_4$ceramic insert shows the possibility to be a new ceramic tool.

  • PDF

Machining Characteristics in High Speed Endmill Operation considering Clearance angle (고속용 엔드밀 가공 시 여유각을 고려한 가공특성)

  • 고성림;박정남;김경배;서천석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.22-25
    • /
    • 2002
  • The objective of this research is to investigate the effect of clearance angle on cutting performance in high speed endmilling. The tool geometry parameters and cutting process have complex relationship. In order to explain the effect of clearance angle and exist the optimal clearance angle according to the diameter, Using various tool with different clearance angle, numerous cutting tests (cutting force, surface accuracy, too life) was undertaken to show the relationship between clearance angle and cutting process.

  • PDF

Impact of PVD Coating Technology on HSS Tool (HSS공구와 PVD 코팅기술의 영향)

    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.899-904
    • /
    • 2001
  • The impact of PVD coatings can be summed up in practical terms: this technology historically complements the best designed tool substrates to enhance cutting performance. PVD coatings are now incorporated in 25% of all HSS tools. The functionality is to extend the machining speed range, improve wear resistance at the cutting edge, and reduce friction at chip/tool contact areas to allow easier chip evacuation. These translate to a larger safe zone, as discussed in the failure mode diagram, for better productivity and higher reliability in machining operations of the customer. PVD coatings therefore represent an enabling technology that extends the application range of cutting tools in response to modern industrial needs. PVD coatings prolong the product life cycle of HSS tools and help this "mature" material to hold its territory against the advent of the newer hardmetal and ceramic tool materials. There is a lot of competitive life left particularly in PVD coated HSS endmills, drills, threading/tapping tools. PM HSS technology further increases the possibilities.ibilities.

  • PDF

A Study on Laser Assisted Machining for Silicon Nitride Ceramics (III) - Variation of the Main Cutting Force and Life of Cutting Tool by LAM of SSN and HIPSN - (질화규소 세라믹의 레이저 예열선삭에 관한 연구 (III) - SSN 및 HIPSN의 예열선삭시 절삭력 및 공구수명의 특성 -)

  • Kim, Jong-Do;Lee, Su-Jin;Kang, Tae-Young;Suh, Jeong;Lee, Jae-Hoon
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.35-39
    • /
    • 2010
  • Generally, ceramic material is very difficult to machine due to high strength and hardness. However, ceramic material can be machined at high temperature by plastic flow as metallic material due to the deterioration of the grain boundary glassy phase. Recently, a new method was developed to execute cutting process with CBN cutting tool by local heating of surface with laser. There are various parameters in LAM because it is a complex process with laser treatment and machining. During laser assisted machining, high power results in reducing of cutting force and increasing tool life, but excessive power brings oxidation of the surface. The effect of laser power, feed rate, cutting depth and etc. were investigated on the life of cutting tool. Chips were observed to find out suitable machining conditions. Chips of SSN had more flow-types than HIPSN. It means SSN is easier to machining. The life of cutting tool was increased with increasing laser power and decreasing feed rate and cutting depth.

A Study on the Improvement of Performance for High Speed Cutting Tool using Magnetic Fluid Polishing Technique (자기연마기술을 이용한 고속절삭공구의 성능향상에 관한 연구)

  • Cho, Jong-Rae;Yang, Sun-Cheul;Jung, Yoon-Gyo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.32-38
    • /
    • 2006
  • The magnetic fluid polishing technique can polish the tool of complex shape, because the polishing method which polishes as compress the workpiece by the magnetism abrasives to arrange to the linear according to the line of magnetic force. Therefore, we producted the magnetic fluid polishing device in order that mirror like finishing processes the tool surface. In order to a polishing condition selection, polishing characteristic was estimated by polishing conditions which are magnetic flux density, polishing speed, grain size, magnetic fluid. The tool was polished to the selected polishing condition. The result to evaluate the polished tool's performance with the cutting force and tool wear, the polished tool's performance was improved compared with the tool not to polish.

Model for predicting tool life of diamond abrasive micro-drills during micro-drilling of ceramic green bodies (세라믹 성형체의 미소구멍 가공 시 다이아몬드 입자 전착 드릴의 공구 수명 예측 모델)

  • 이학구;이대길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.593-598
    • /
    • 2003
  • Ceramic plates containing many micro-holes are used in diverse applications such as MCP (Microchannel Plate). catalytic converters, filters, electrical insulators in integrated circuits, and so on. One of the efficient methods for machining many holes in ceramic plates is wet drilling of ceramic green bodies followed by sintering them. Since the strength of ceramic green bodies is much lower than the strength of sintered ceramic plate, ceramic green bodies can be drilled with high feed rate. The axial force during micro-drilling of ceramic green bodies increases rapidly at high feed rate, which induces the crack in workpiece. Therefore, the tool lift of micro-drill with respect to feed rate may be determined by the predicting increase of axial force. In this work, the axial force during micro-drilling was calculated using the chip flow model on the micro-drill tip. from which the tool life of diamond abrasive micro-drill during micro-drilling of ceramic green bodies was calculated.

  • PDF

Application of High Speed Tool Steel in Warm Forging (온간단조용 금형에 있어서 고속도 공구강의 적용)

  • 김동진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.75-78
    • /
    • 2000
  • There are several effective factors to influence die life in the warm forging process. For instance process design die design and die materials etc This study presented heat treatment method which could improve toughness and wear resistance simultaneously in high temperature to apply high speed tool steels like SKH51 to die material for warm forging process. To verify the feasibility of application of heat treatment method mentioned above wear test was performed under the condition of constant time in 40$0^{\circ}C$ Wear coefficient was examined to search a relation between wear amount and time for each material and heat treatment method in 30, 60, and 130 minutes. To quantify the toughness-behavior between room and high temperature impact test was performed and heat fatigue test also fulfilled to compare with the resistance of heat check in room, 200, 400, and $600^{\circ}C$ temperature. On the basis of experimental results mentioned above high speed tool steel was applied to verify appropriateness of newly proposed heat treatment method for die of rotor pole used in automobile alternator. As a result die life of high speed tool steel applied newly proposed heat treatment is longer than that of STD61.

  • PDF